2020, Número 4
<< Anterior Siguiente >>
Dermatología Cosmética, Médica y Quirúrgica 2020; 18 (4)
Aspectos inmunológicos de la candidosis mucocutánea crónica
Flores TK, Bonifaz A
Idioma: Español
Referencias bibliográficas: 84
Paginas: 296-306
Archivo PDF: 913.49 Kb.
RESUMEN
La candidosis mucocutánea crónica es una entidad rara caracterizada
por infecciones recurrentes y persistentes, causadas
principalmente por
Candida albicans, en donde se afectan las
mucosas, la piel y las uñas; tiene diversas expresiones clínicas e
incluso sindromáticas, se adquiere por deficiencias inmunes primarias.
De acuerdo con una revisión bibliográfica, suscribimos
este repaso inmunológico de la candidosis mucocutánea crónica,
una enfermedad con muchas aristas clínicas, inmunológicas
y terapéuticas.
REFERENCIAS (EN ESTE ARTÍCULO)
Reyes-Villanueva J y Arenas R, Candidiasis mucocutánea. Una revisión, Rev Mex Micol 2007; 25:91-104.
Arenas R, Candidosis. En Micología médica ilustrada, México, Mc- Graw-Hill, 5ª ed., 2014, pp. 334-42.
Drohuet E, Candidosis mucocutánea crónica. En Ruiz-Maldonado R et al., Tratado de dermatología pediátrica, México, Interamericana-Mc- Graw-Hill, 1992, pp. 571-84.
Bonifaz A, Candidosis. En Micología médica básica, México, McGraw-Hill, 2020, pp. 463-502.
Reyes-Delgado K, Staines-Boone AT, Amaya-Guerra M y González- Cabello D, Candidiasis mucocutánea crónica, Dermatol Rev Mex 2013; 57:378-81.
Maya-Rico AM y Cardona-Castro N, Candidiasis mucocutánea crónica: una mirada al entendimiento genético, Iatreia 2018; 31(4):393-399. doi: 10.17533.
Mayer FL, Wilson D y Hube B, Candida albicans: pathogenicity mechanisms, Virulence 2013; 4:119-28.
Carey B, Lambourne J, Porter S et al., Chronic mucocutaneous candidiasis due to gain-of-function mutation in stat1, Oral Dis 2019; 25:684-92.
Sanghvi R, Siddik D, Hullah E et al., Chronic mucocutaneous candidiasis: a rare diagnosis in paediatric dentistry, Br J Oral Maxillofac Surg 2020; 20:30149-52.
Takeuchi O y Akira S, Pattern recognition receptors and inflammation, Cell 2010; 140:805-20.
Mogensen, TH, Pathogen recognition and inflammatory signaling in innate immune defenses, Clin Microbiol Rev 2009; 22:240-73.
Lionakis MS, Iliev ID y Hohl, TM, Immunity against fungi, jci Insight 2017; 2:e93156.
Lionakis MS y Levitz SM, Host control of fungal infections: lessons from basic studies and human cohorts, Annu Rev Immunol 2017; 13:042617-053318.
Netea MG, Joosten LA, Van der Meer JW et al., Immune defense against candida fungal infections, Nat Rev Immunol 2015; 15:630-42.
Salazar F y Brown GD, Antifungal innate immunity: a perspective from the last 10 years, J Innate Immun 2018; 10:373-97.
Brown GD, Dectin-1: a signalling non-tlr pattern-recognition receptor, Nat Rev Immunol 2006; 6:33-43.
Gross O, Gewies A, Finger K et al., card9 controls a non-tlr signalling pathway for innate anti-fungal immunity, Nature 2006; 442:651-6.
Dennehy KM, Willment JA, Williams DL et al., Reciprocal regulation of il-23 and il-12 following co-activation of dectin-1 and tlr signaling pathways, Eur J Immunol 2009; 39:1379-86.
Leibund Gut-Landmann S, Gross O, Robinson MJ et al., Syk- and card9-dependent coupling of innate immunity to the induction of t helper cells that produce interleukin 17, Nat Immunol 2007; 8:630-8.
Sparber F y Leibund Gut-Landmann S, Interleukin 17-mediated host defense against Candida albicans, Pathogens 2015; 4:606-19.
Ferwerda B, Ferwerda G, Plantinga T et al., Human dectin-1 deficiency and mucocutaneous fungal infections, N Engl J Med 2009; 361:1760-7.
Nahum A, Dadi H, Bates A et al., The biological significance of tlr3 variant, l412f, in conferring susceptibility to cutaneous candidiasis, cmv and autoimmunity, Autoimmun Rev 2012; 11:341-7.
Gendelman S, Han Y y Hsieh F, Identification of tlr3 and ptpn22 mutations in one cohort with chronic mucocutaneous candidiasis (cmc), J Allergy Clin Immunol 2012; 131:AB153.
Nahum A, Dadi H, Bates A et al., The l412f variant of Toll-like receptor 3 (tlr3) is associated with cutaneous candidiasis, increased susceptibility to cytomegalovirus, and autoimmunity, J Allergy Clin Immunol 2011; 127:528-31.
Brubaker SW, Bonham KS, Zanoni I et al., Innate immune pattern recognition: a cell biological perspective, Annu Rev Immunol 2015; 33: 257-90.
Compan V, Martín-Sánchez F, Baroja-Mazo A et al., Apoptosis-associated speck-like protein containing a card forms specks but does not activate caspase-1 in the absence of nlrp3 during macrophage swelling, J Immunol 2015; 194:1261-73.
Lev-Sagie A, Prus D, Linhares IM et al., Polymorphism in a gene coding for the inflammasome component nalp3 and recurrent vulvovaginal candidiasis in women with vulvar vestibulitis syndrome, Am J Obstet Gynecol 2009; 200:303.
Jaeger M, Carvalho A, Cunha C et al., Association of a variable number tandem repeat in the nlrp3 gene in women with susceptibility to rvvc, Eur J Clin Microbiol Infect Dis 2016; 35:797-801.
Dinarello CA, il-18: a Th1-inducing, proinflammatory cytokine and a new member of the il-1 family, J Allergy Clin Immunol 1999; 103:11-24.
Chung Y, Chang SH, Martínez GJ et al., Critical regulation of early Th17 cell differentiation by interleukin-1 signaling, Immunity 2009; 30:576-87.
Sutton CE, Lalor SJ, Sweeney CM et al., Interleukin-1 and il-23 induce innate il-17 production from gammadelta t cells, amplifying Th17 responses and autoimmunity, Immunity 2009; 31:331-41.
Jaeger M, Van der Lee R, Cheng S et al., The rig-i-like helicase receptor mda5 (ifih1) is involved in the host defense against Candida infections, Eur J Clin Microbiol Infect Dis 2015; 34:963-74.
Okada S, cmcd: chronic mucocutaneous candidiasis disease, jpn J Clin Immunol 2017; 40:109-17.
Conti HR y Gaffen SL, il-17-mediated immunity to the opportunistic fungal pathogen Candida albicans, J Immunol 2015; 195:780-8.
Acosta-Rodríguez EV, Rivino L, Geginat J et al., Surface phenotype and antigenic specificity of human interleukin 17-producing t helper memory cells, Nat Immunol 2007; 8:639-46.
Yang XO, Panopoulos AD, Nurieva R et al., stat3 regulates cytokinemediated generation of inflammatory helper t cells, J Biol Chem 2007; 282:9358-63.
Li J, Casanova JL y Puel A, Mucocutaneous il-17 immunity in mice and humans: host defense vs. excessive inflammation, Mucosal Immunol 2018; 11:581-9.
Mengesha BG y Conti HR, The role of il-17 in protection against mucosal Candida infections, J Fungi 2017; 3:52.
Mease PJ, Roussou E, Burmester GR et al., Safety of ixekizumab in patients with psoriatic arthritis: results from a pooled analysis of three clinical trials, Arthritis Care Res (Hoboken) 2019; 71:367-78.
Deodhar A, Mease P, McInnes IB et al., Long-term safety of secukinumab in patients with moderate-to-severe plaque psoriasis, psoriatic arthritis, and ankylosing spondylitis: integrated pooled clinical trial and post-marketing surveillance data, Arthritis Res Ther 2019; 21:111.
Zimmerman O, Rösler B, Zerbe CS et al., Risks of ruxolitinib in stat1 gain-of-function-associated severe fungal disease, Open Forum Infect Dis 2017; 4:ofx202.
Puel A, Cypowyj S, Bustamante J et al., Chronic mucocutaneous candidiasis in humans with inborn errors of interleukin-17 immunity, Science 2011; 332:65-8.
Levy R, Okada S, Beziat V et al., Genetic, immunological, and clinical features of patients with bacterial and fungal infections due to inherited il-17ra deficiency, Proc Natl Acad Sci USA 2016; 113:e8277-e85.
Fellmann F, Angelini F, Wassenberg J et al., il-17 receptor a and adenosine deaminase 2 deficiency in siblings with recurrent infections and chronic inflammation, J Allergy Clin Immunol 2016; 137:1189-96.
Aujnarain A, Dadi H y Mandola A, Chronic mucocutaneous candidiasis associated with a novel frameshift mutation in il-17 receptor alpha, LymphoSign Journal 2019; 6: 68-74.
Ling Y, Cypowyj S, Aytekin C et al., Inherited il-17rc deficiency in patients with chronic mucocutaneous candidiasis, J Exp Med 2015; 212: 619-31.
Braida A, Lerman D, Truccolo P et al., Mutation in the c receptor of interleukin 17, as a cause of chronic mucocutaneous candidiasis, Int J Infect Dis 2018; 73S 3:398.
Mössner R, Diering N, Bader O et al., Ruxolitinib induces interleukin 17 and ameliorates chronic mucocutaneous candidiasis caused by stat1 gain-of-function mutation, Clin Infect Dis 2016; 62: 951-3.
Boisson B, Wang C, Pedergnana V et al., An act1 mutation selectively abolishes interleukin-17 responses in humans with chronic mucocutaneous candidiasis, Immunity 2013; 39:676-86.
Okada S, Puel A, Casanova JL et al., Chronic mucocutaneous candidiasis disease associated with inborn errors of il-17 immunity, Clin Trans Immunology 2016; 5:e114.
Chandesris MO, Melki I, Natividad A et al., Autosomal dominant stat3 deficiency and hyper-ige syndrome: molecular, cellular, and clinical features from a French national survey, Medicine 2012; 91: e1-19.
Holland SM, DeLeo FR, Elloumi HZ et al., stat3 mutations in the hyper- ige syndrome, N Engl J Med 2007; 357:1608-19.
Frey-Jakobs S, Hartberger JM, Fliegauf M et al., znf341 controls stat3 expression and thereby immunocompetence, Sci Immunol 2018; 3:eaat4941.
Puel A, Human inborn errors of immunity underlying superficial or invasive candidiasis, Hum Genet 2020.
Roifman C, Orange J y TePas E, Chronic mucocutaneous candidiasis. Disponible en: www.uptodate.com. Fecha de consulta: 1 de mayo de 2020.
De Beaucoudrey L, Puel A, Filipe-Santos O et al., Mutations in stat3 and il12rb1 impair the development of human il-17-producing t cells, J Exp Med 2008; 205:1543-50.
Minegishi Y, Saito M, Nagasawa M et al., Molecular explanation for the contradiction between systemic Th17 defect and localized bacterial infection in hyper-ige syndrome, J Exp Med 2009; 206:1291-1301.
Markle J, Martínez-Barricarte R, Ma C et al., Human ifn-γ immunity to mycobacteria is governed by both il-12 and il-23, Sci Immunol 2018; 3:eaau6759.
Prando C, Samarina A, Bustamante J et al., Inherited il-12p40 deficiency: genetic, immunologic, and clinical features of 49 patients from 30 kindreds, Medicine 2013; 92:109-22.
De Beaucoudrey L, Samarina A, Bustamante J et al., Revisiting human il-12rp1 deficiency: a survey of 141 patients from 30 countries, Medicine 2010; 89:381-402.
Ouederni M, Sanal O, Ikinciogullari A et al., Clinical features of candidiasis in patients with inherited interleukin 12 receptor β1 deficiency, Clin Infect Dis 2014; 58:204-13.
Ferre EM, Rose SR, Rosenzweig SD et al., Redefined clinical features and diagnostic criteria in autoimmune polyendocrinopathy-candidiasis- ectodermal dystrophy, jci Insight 2016; 1:e88782.
Kisand K, Wolff ASB, Podkrajsek KT et al., Chronic mucocutaneous candidiasis in apeced or thymoma patients correlates with autoimmunity to Th17-associated cytokines, J Exp Med 2010; 207: 299-308.
Zlotogora J y Shapiro MS, Polyglandular autoimmune syndrome type i among Iranian Jews, J Med Genet 1992; 29:824-6.
Rosatelli MC, Meloni A et al., A common mutation in Sardinian autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients, Hum Genet 1998; 103:428-34.
Wolff ASB, Erichsen MM, Meager A et al., Autoimmune polyendocrine syndrome type 1 in Norway: phenotypic variation, autoantibodies, and novel mutations in the autoimmune regulator gene, J Clin Endocrinol Metab 2007; 92:595-603.
Bruserud O, Oftedal BE, Landegren N et al., A longitudinal follow-up of autoimmune polyendocrine syndrome type 1, J Clin Endocrinol Metab 2016; 101:2975-83.
Glocker EO, Hennigs A, Nabavi M et al., A homozygous card9 mutation in a family with susceptibility to fungal infections, N Engl J Med 2009; 361:1727-35.
Lanternier F, Mahdaviani SA, Barbati E et al., Inherited card9 deficiency in otherwise healthy children and adults with Candida species-induced meningoencephalitis, colitis, or both, J Allergy Clin Immunol 2015; 135:1558-68.
Lanternier F, Pathan S, Vincent QB et al., Deep dermatophytosis and inherited card9 deficiency, N Engl J Med 2013; 369:1704-14.
Grumach AS, De Queiroz-Telles F, Migaud M et al., A homozygous card9 mutation in a Brazilian patient with deep dermatophytosis, J Clin Immunol 2015; 35:486-90.
Alves de Medeiros AK, Lodewick E, Bogaert DJ et al., Chronic and invasive fungal infections in a family with card9 deficiency, J Clin Immunol 2016; 36:204-9.
Davidson L, Netea M y Kullberg B, Patient susceptibility to candidiasis: a potential for adjunctive immunotherapy, J Fungi 2018; 4:1-20.
Gavino C, Hamel N, Zeng JB et al., Impaired rasgrf1/erk-mediated gm-csf response characterizes card9 deficiency in French-Canadians, J Allergy Clin Immunol 2016; 137:1178-88.
Celmeli F, Oztoprak N, Turkkahraman D et al., Successful granulocyte colony-stimulating factor treatment of relapsing Candida albicans meningoencephalitis caused by card9 deficiency, Pediatr Infect Dis J 2016; 35:428-31.
Wang X, Zhang R, Wu W et al., Impaired specific antifungal immunity in card9-deficient patients with phaeohyphomycosis, J Invest Dermatol 2018; 138: 607-17.
Liu L, Okada S, Kong XF et al., Gain-of-function human stat1 mutations impair il-17 immunity and underlie chronic mucocutaneous candidiasis, J Exp Med 2011; 208:1635-48.
Takezaki S, Yamada M, Kato M et al., Chronic mucocutaneous candidiasis caused by a gain-of-function mutation in the stat1 dna-binding domain, J Immunol 2012; 189:1521-6.
Boisson B, Quartier P y Casanova JL, Immunological loss-of-function due to genetic gain-of-function in humans: autosomal dominance of the third kind, Curr Opin Immunol 2015; 32:90-105.
Van de Veerdonk FL, Plantinga TS, Hoischen A et al., stat1 mutations in autosomal dominant chronic mucocutaneous candidiasis, N Engl J Med 2011; 365:54-61.
Toubiana J, Okada S, Hiller J et al., Heterozygous stat1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype, Blood 2016; 127:3154-64.
Maya-Rico AM y Cardona-Castro N, Candidiasis mucocutánea crónica: una mirada al entendimiento genético, Iatreia 2018; 31:393-9.
Gow NA, Van de Veerdonk FL, Brown JPA y Netea MG, Candida albicans morphogenesis and host defense: discriminating invasion from colonization, Nat Rev Microbiol 2011; 10(2):112-22.
Mena L, Arellano-Mendoza I y Bonifaz A, Relación genética, inmunológica y de card9 en micosis especiales y diseminadas, Dermatol Rev Mex 2017; 61(4):345-50.