2020, Número 1
<< Anterior Siguiente >>
TIP Rev Esp Cienc Quim Biol 2020; 23 (1)
TGF-β y células cebadas: reguladores del desarrollo del tumor
Ávila-Rodríguez D, Segura-Villalobos DL, Ibarra-Sánchez A, González-Espinosa C, Macías-Silva M
Idioma: Español
Referencias bibliográficas: 77
Paginas: 1-11
Archivo PDF: 433.25 Kb.
RESUMEN
El Factor de crecimiento transformante β (TGF-β) es una citocina pleiotrópica implicada en distintas condiciones
patológicas, como desórdenes autoinmunes, alergias y en los últimos años, en el cáncer. Esta citocina ejerce efectos
supresores de tumores que las células cancerosas deben evadir para lograr la progresión del tumor. Sin embargo,
paradójicamente, el TGF-β también modula procesos inflamatorios que favorecen la progresión del tumor, como el
reclutamiento de células del sistema inmune al sitio del mismo; entre estas células se encuentran las células cebadas
(CCs), las cuales, a su vez también participan en la regulación del tumor, a través de la secreción de distintos mediadores
proinflamatorios, proangiogénicos y factores de crecimiento. En esta revisión se describen algunos avances en la
comprensión del papel del TGF-β en la regulación de las CCs y la contribución de éstas en el desarrollo y la metástasis
de tumores sólidos. El entendimiento de la función del TGF-β y de las células cebadas durante el desarrollo del cáncer
es fundamental para el diseño de nuevas terapias que inhiban la progresión del tumor.
REFERENCIAS (EN ESTE ARTÍCULO)
Albini, A., Bruno, A., Noonan, M.D. & Mortara, L. (2018). Contribution to Tumor Angiogenesis From innate immune Cells within the Tumor Microenvironment: implications for immunotherapy. Frontiers in Immunology, 9 (527), 1-19. DOI: 10.3389/fimmu.2018.00527.
Ávila-Rodríguez, D., González-Espinosa, C., Vázquez- Victorio, G., Ibarra-Sánchez, A., Anaya-Rubio, I.A., Ríos-López, D.G., Caligaris, C., Blank, U.,Sosa- Garrocho, M. & Macías-Silva, M.(2019). Manuscrito en preparación.
Batlle, E. & Massagué, J. (2019). Transforming Growth Factor-β Signaling in Immunity and Cancer. Immunity, 50(4), 924-940. DOI: 10.1016/j.immuni.2019.03.024.
Baumgartner, R. A., Deramo, V.A. & Beaven M.A. (1996). Constitutive and inducible mechanisms for synthesis and release of cytokines in immune cell lines. J. Immunol., 157 (9), 4087-4093.
Benítez-Bribiesca, L., Wong, A., Utrera, D. & Castellanos, E. (2001). The role of mast cell tryptase in neoangiogenesis of premalignant and malignant lesions of the uterine cervix. J. Histochem. Cytochem., 49(8), 1061-1062. DOI: 10.1177/002215540104900816.
Benítez-Garrido, J.P., Ibarra-Sanchez, A., Macías Silva, M., Villalobos Molina, R. , Padilla-Trejo, J. A. & Gonzalez- Espinosa, C. (2009). TGFβ Presence During IgEdependent Sensitization Primes Mast Cells for Higher VEGF Production After FcRI Activation. Open Allergy J., 2, 16-26.
Bissonnette, E.Y., Enciso, J.A. & Befus, A.D. (1997). TGFbeta1 inhibits the release of histamine and tumor necrosis factor-alpha from mast cells through an autocrine pathway. Am. J. Respir. Cell Mol. Biol., 16(3), 275-282. DOI: 10.1165/ajrcmb.16.3.9070612.
Brownell, E., Fiorentino, L., Jolly, G., Wolfe, K., Kincaid, S., Seperack, P. & Visco, D. (1995). Immunolocalization of stromelysin-related protein in murine mast cell granules. Int. Arch. Allergy Immunol., 107(1-3), 333-345. DOI:10.1159/000237019.
Cardamone, C., Parente, R., Feo, G.D. &Triggiani, M. (2016). Mast cells as effector cells of innate immunity and regulators of adaptive immunity. Immunol. Lett., 178, 10- 14. DOI: 10.1016/j.imlet.2016.07.003.
Chang, D.Z., Ma, Y., Ji, B., Wang, H., Deng, D., Liu, Y., Abbruzzese, J.L., Liu, Y.J., Logsdon, C.D. & Hwu, P. (2011). Mast cells in tumor microenvironment promotes the in vivo growth of pancreatic ductal adenocarcinoma. Clinical Cancer Research, 17, 7015–7023. DOI: 10.1158/1078-0432.CCR-11-0607.
Chen, W. J., Jin, W., Hardegen, N., Lei, K. J., Li, L., Marinos, N. & Wahl, S. M. (2003). Conversion of Peripheral CD4 + CD25 - Naive T Cells to CD4 + CD25 + Regulatory T Cells by TGF-β Induction of Transcription Factor Foxp3. J. Exp. Med., 198(12), 1875–1886. DOI:10.1084/ jem.20030152.
Dabiri, S., Huntsman, D., Makretsov, N., Cheang, M., Gilks, B., Bajdik, C., Gelmon, K., Chia, S. & Hayes, M. (2004). The presence of stromal mast Cells identifies a subset of invasive breast cancers with a favorable prognosis. Mod. Pathol.,17, 690–695. DOI: 10.1038/modpathol.3800094.
Dalal, B. I., Keown, P. A. & Greenberg, A. H. (1993). Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am. J. Pathol., 143(2), 381–389.
De Rezende, L. C. D., Silva, I. V., Rangel, L. B. A. & Guimarães, M. C. C. (2010). Regulatory T Cell as a target for cancer therapy. Arch. Immunol. Ther. Exp., 58(3), 179–190. DOI:.org/10.1007/s00005-010-0075-0.
Duncan, M.L., Richards, A.L. & Mihm Jr., C.M. (1998). Increased mast cell density in invasive melanoma. J. Cutan. Pathol., 25, 11-15. DOI: 10.1111/j.1600- 0560.1998.tb01683.x.
Dundar, E., Oner, U., Peker, B.C., Metintas, M., Isiksoy, S. & Ak, G. (2008). The significance and relationship between mast cells and tumor angiogenesis in non-small cell lung carcinoma. J. Int. Med. Res., 36, 88-95. DOI: 10.1177/147323000803600112.
Edlund, S., Landström, M., Heldin, C.H. & Aspenström, P. (2002).Transforming growth factor-beta-induced mobilization of actin cytoskeleton requires signaling by small GTPases Cdc42 and RhoA. Mol. Biol. Cell., 13(3), 902-914. DOI: 10.1091/mbc.01-08-0398.
Ehrlich P., (1878). Beiträgezur Theorie und Praxis der histologischen Färbung. Thesis. Leipzig University. 6-17.
Eissmann, M.F., Dijkstra, C., Jarnicki, A., Phesse, T., Brunnberg, J., Poh, A.R., Etemadi, N., Tsantikos, E., Thiem, S., Huntington, N.D., Hibbs, M.L., Boussioutas, A., Grimbaldeston, M.A., Buchert, M ., O’Donoghue, R.J.J., Masson, F. & Ernst, M. (2019). IL-33-mediated mast cell activation promotes gastric cancer through macrophage mobilization. Nat. Commun., 10(2735), 1-16. DOI: 10.1038/s41467-019-10676-1.
Elpek, G.O., Gelen, T., Aksoy, N.H., Erdoğan, A., Dertsiz, L., Demircan, A. & Keleş, N. (2001).The prognostic relevance of angiogenesis and mast cells in squamous cell carcinoma of the oesophagus. J. Clin. Pathol., 54(12), 940-944. DOI: 10.1136/jcp.54.12.940.
Fleischmann, A., Schlomm, T., Kollermann, J., Sekulic, N., Huland, H., Mirlacher, M., Sauter, G., Simon, R. & Erbersdobler, A. (2009). Immunological microenvironment in prostate cancer: high mast cell densities are associated with favorable tumor characteristics and good prognosis. Prostate, 69 (9), 976– 981. DOI: 10.1002/pros.20948.
Frantz, C., Stewart, K.M. & Weaver, V.M. (2010). The extracellular matrix at a glance. J. Cell Sci.15; 123(Pt 24), 4195-4200. DOI: 10.1242/jcs.023820.
Frossi, B., Mion, F., Sibilano, R., Danelli, L. & Pucillo, C.E.M. (2018). Is it time for a new classification of mast cells? What do we know about mast cell heterogeneity? Immunol. Rev., 282(1), 35-46. DOI: 10.1111/imr.12636.
Funaba, M., Ikeda, T., Murakami, M., Ogawa, K., Nishino, Y., Tsuchida, K., Sugino, H. & Abe, M. (2006). Transcriptional regulation of mouse mast cell protease-7 by TGF-beta. Biochim. Biophys. Acta, 1759(3-4), 166- 170. DOI: 10.1016/j.bbaexp.2006.04.003.
Galli, S.J. & Tsai, M. (2010). Mast cells in allergy and infection: versatile effector and regulatory cells in innate and adaptive immunity. Eur. J. Immunol., 40(7), 1843- 1851. DOI: 10.1002/eji.201040559.
Galliher, A.J., Neil, J.R. & Schiemann, W.P. (2006). Role of transforming growth factor-beta in cancer progression. Future Oncol., 2(6), 743-763. DOI: 10.2217/14796694.2.6.743.
Gentek, R., Ghigo, C., Hoeffel, G., Bulle, J.M., Msallam, R., Gautier, G., Launay, P., Chen, J., Ginhoux, F. & Bajénoff, M. (2018). Hemogenic Endothelial Fate Mapping Reveals Dual Developmental Origin of Mast Cells. Immunity, 48 (6), 1160-1171. DOI: 10.1016/j.immuni.2018.04.025.
Glajcar, A., Szpor, J., Pacek, A., Ewa Tyrak, K., Chan, F., Streb, J., Hodorowicz-Zaniewska, D. & Okón, K. (2017). The relationship between breast cancer molecular subtypes and mast cell populations in tumor microenvironment. Virchows Archiv., 470(5), 505-515. DOI: 10.1007/ s00428-017-2103-5.
Gómez, G., Ramírez, C.D., Rivera. J., Patel, M., Norozian, F., Wright, H.V., Kashyap, M.V., Barnstein, B.O., Fischer- Stenger, K., Schwartz, L.B., Kepley, C.L. & Ryan, J.J. (2005). TGF-beta 1 inhibits mast cell Fc epsilon RI expression. J. Immunol. 15; 174(10), 5987-5993.DOI: 10.4049/jimmunol.174.10.5987.
Gordon, J.R. & Galli, S.J. (1994). Promotion of mouse fibroblast collagen gene expression by mast cells stimulated via the Fc epsilon RI. Role for mast cellderived transforming growth factor beta and tumor necrosis factor alpha. J. Exp. Med. 1; 180(6), 2027-2037. DOI: 10.1084/jem.180.6.2027.
Grady, W. M., Myeroff, L. L., Swinler, S. E., Rajput, A., Thiagalingam, S., Lutterbaugh, J. D. & Markowitz, S. (1999). Mutational Inactivation of Transforming Growth Factor β Receptor Type II in Microsatellite Stable Colon Cancers. Cancer Res., 59(2), 320–324.
Gruber, B.L., Marchese, M.J., & Kew, R.R. (1994). Transforming growth factor-beta 1 mediates mast cell chemotaxis. J. Immunol. 15; 152(12), 5860-5867.
Hui, L. & Chen, Y. (2015).Tumor microenvironment: Sanctuary of the devil. Cancer Lett., 368, 7-13. DOI: 10.1016/j.canlet.2015.07.039.
Kashyap, M., Bailey, D.P., Gomez, G., Rivera, J., Huff, T.F. & Ryan, J.J. (2005). TGF-beta1 inhibits late-stage mast cell maturation. Exp. Hematol., 33(11), 1281-1291. DOI: 10.1016/j.exphem.2005.07.001.
Kelly, A., Houston, S. A., Sherwood, E., Casulli, J. & Travis, M. A. (2017). Regulation of Innate and Adaptive Immunity by TGFβ. Advances inImmunol., 134, 137– 233. DOI: 10.1016/bs.ai.2017.01.001.
Komi, D.E.A. & Redegeld, F.A. (2019). Role of Mast Cells in Shaping the Tumor Microenvironment. Clin. Rev. Allergy Immunol., DOI: 10.1007/s12016-019-08753-w.
Krstic, J. & Santibanez, J.F. (2014). Transforming growth factor beta and matrix metalloproteinases: functional interactions in tumor stroma-infiltrating myeloid cells. Scientific World Journal., 2014, 521754. DOI: 10.1155/2014/521754.
Li, M.O., Wan, Y.Y., Sanjabi, S., Robertson, A.K. & Flavell, R.A. (2006). Transforming growth factor-βregulation of immune responses. Annu. Rev. Immunol., 24, 99-146. DOI: 10.1146/annurev.immunol.24.021605.090737.
Lindstedt, K.A., Wang, Y., Shiota, N., Saarinen, J., Hyytiäinen, M., Kokkonen, J.O., Keski-Oja, J. & Kovanen, P.T. (2001). Activation of paracrine TGF-beta1 signaling upon stimulation and degranulation of rat serosal mast cells: a novel function for chymase. FASEB J., 15(8), 1377-1388. DOI: 10.1096/fj.00-0273com.
Ma, Y., Hwang, R.F., Logsdon, C.D. & Ullrich, S.E. (2013). Dynamic mast cell-stromal cell interactions promote growth of pancreatic cancer. Cancer Res., 73, 3927–3937. DOI: 10.1158/0008-5472.CAN-12-4479.
Massagué, J. (2012). TGFβ signalling in context. Nat. Rev. Mol. Cell Biol. 13(10), 616-630. DOI: 10.1038/nrm3434.
Maurice, D., Pierreux, C. E., Howell, M., Wilentz, R. E., Owen, M. J. & Hill, C. S. (2001). Loss of Smad4 function in pancreatic tumors: C-terminal truncation leads to decreased stability. J. Biol. Chem., 276(46), 43175– 43181. DOI: 10.1074/jbc.M105895200.
Melillo, R.M., Guarino, V., Avilla, E., Galdiero, M.R., Liotti, F., Prevete, N., Rossi, F.W, Basolo, F., Ugolini, C., de Paulis, A., Santoro, M. & Marone, G. (2010). Mast cells have a protumorigenic role in human thyroid cancer. Oncogene, 29 (47), 6203-6215. DOI: 10.1038/ onc.2010.348.
Miller, H.R., Wright, S.H., Knight, P.A., & Thornton, E.M. (1999). A novel function for transforming growth factorbeta1: up regulation of the expression and the IgEindependent extracellular release of a mucosal mast cell granule-specific beta-chymase, mouse mast cell protease-1. Blood. 15; 93(10), 3473-3486.
Nieto, M.A, Huang, R.Y., Jackson, R.A. & Thiery, J.P. (2016). EMT: 2016. Cell, 30; 166(1), 21-45. DOI: 10.1016/j. cell.2016.06.028.
Norozian, F., Kashyap, M., Ramirez, C.D., Patel, N., Kepley, C.L., Barnstein, B.O. & Ryan, J.J. (2006). TGFbeta1 induces mast cell apoptosis. Exp. Hematol., 34(5), 579- 587. DOI: 10.1016/j.exphem.2006.02.003.
Oldford, A.S. & Marshall, S.J. (2015). Mast cells as targets for immunotherapy of solid tumors. Mol. Immunol., 63, 113-124. DOI: 10.1016/j.molimm.2014.02.020.
Oleinik, N.V., Krupenko, N.I. & Krupenko, S.A. (2010). ALDH1L1 inhibits cell motility via dephosphorylation of cofilin by PP1 and PP2A. Oncogene, 25; 29(47), 6233- 6244. DOI: 10.1038/onc.2010.356.
Olsson, N., Piek., E., Ten, Dijke, P. & Nilsson, G. (2000). Human mast cell migration in response to members of the transforming growth factor-beta family. J. Leukoc Biol., 67(3), 350-356. DOI: 10.1002/jlb.67.3.350.
Olsson, N., Piek, E., Sundström, M., Ten, Dijke, P. & Nilsson, G. (2001). Transforming growth factor beta mediated mast cell migration dependson mitogen-activated protein kinase activity. Cell Signal., 13(7), 483-490. DOI: 10.1016/s0898-6568(01)00176-0.
Ouyang, W., Beckett, O., Ma, Q. & Li, M. O. (2010). Transforming growth factor-β signaling curbs thymic negative selection promoting regulatory T cell development. Immunity, 32(5), 642–653. DOI: 10.1016/j. immuni.2010.04.012.
Picon, A., Gold, L. I., Wang, J., Cohen, A. & Friedman, E. (1998). A subset of metastatic human colon cancers expresses elevated levels of transforming growth factor beta1. Cancer Epidemiology Biomarkers Prev., 7(6), 497–504.
Ramírez-Valadez, K.A., Vázquez-Victorio G., Macías-Silva, M. & González-Espinosa, C. (2017). Fyn kinase mediates cortical actin ring depolymerization required for mast cell migration in response to TGF-β in mice. Eur. J. Immunol. 47(8), 1305-1316. DOI: 10.1002/eji.201646876.
Rao, Q., Chen, Y., Yeh, C.R., Ding, J., Li, L., Chang, C. & Yeh, C. (2016). Recruited mast cells in the tumor microenvironment enhance bladder cancer metastasis via modulation of ERβ/CCL2/CCR2 EMT/MMP9 signals. Oncotarget, 7, 7842-7855. DOI: 10.18632/ oncotarget.5467.
Ribatti, D., Ennas, M.G., Vacca A., Ferreli, F., Nico, B., Orru, S. & Sirigu, P. (2003). Tumor vascularity and tryptase positive mast cells correlate with a poor prognosis in melanoma. Eur. J. Clin.Invest., 33, 420-425. DOI: 10.1046/j.1365-2362.2003.01152.x.
Ribatti, D., Finato, N., Crivellato, E., Guidolin, D., Longo, V., Mangieri, D., Nico, B., Vacca, A. & Beltrami, C.A. (2007). Angiogenesis and mast cells in human breast cancer sentinel lymph nodes with and without micrometastases. Histopathology. 51, 837-842. DOI: 10.1111/j.1365- 2559.2007.02869.x.
Riento, K. & Ridley, A.J. (2003). Rocks: multifunctional kinases in cell behaviour. Nat. Rev. Mol. Cell Biol., 4(6), 446-456.DOI: 10.1038/nrm1128.
Rosbottom, A., Scudamore, C.L., von der Mark, H., Thornton, E.M., Wright, S.H. & Miller, H.R. (2002). TGF-beta 1 regulates adhesion of mucosal mast cell homologues to laminin-1 through expression of integrin alpha 7. J. Immunol., 169(10), 5689-5695. DOI: 10.4049/ jimmunol.169.10.5689.
Roskoski, R. Jr. (2007). Vascular endothelial growth factor (VEGF) signaling in tumor progression. Crit. Rev. Oncol. Hematol., 62(3), 179-213. DOI: 10.1016/j. critrevonc.2007.01.00.6.
Sawatsubashi, M., Yamada, T., Fukushima, N., Mizokami, H., Tokunaga, O. & Shin, T. (2000). Association of vascular endothelial growth factor and mast cells with angiogenesis in laryngeal squamous cell carcinoma. Virchows Arch., 436, 243-248. DOI: 10.1007/s004280050037.
Schiller, M., Javelaud, D. & Mauviel, A. (2004). TGFbeta- induced SMAD signaling and gene regulation: consequences for extracellular matrix remodeling and wound healing. J. Dermatol. Sci., 35, 83-92. DOI: 10.1016/j.jdermsci.2003.12.006.
Shull, M.M., Ormsby, I., Kier, A.B., Pawlowski, S., Diebold, R.J., Yin, M., Allen, R., Sidman, C., Proetzel, G., Calvin, D., Annunziata, N. & Doetschman T. (1992). Targeted disruption of the mouse transforming growth factor-β1 gene results in multifocal inflammatory disease. Nature, 359(6397), 693–699. DOI: 10.1038/359693a0.
Siraganian, R.P. (2003). Mast cell signal transduction from the high-affinity IgE receptor. Curr. Opin Immunol., 15(6), 639-646. DOI: 10.1016/j.coi.2003.09.010.
Sporn, M.B., Roberts, A.B., Wakefield, L.M., & Assoian, R.K. (1986). Transforming growth factor-beta: biological function and chemical structure. Science, 1; 233(4763), 532-534.
Tóth-Jakatics, R., Jimi, S., Takebayashi, S. & Kawamoto, N. (2000). Cutaneous malignant melanoma: correlation between neovascularization and peritumor accumulation of mast cells over expressing vascular endothelial growth factor. Hum. Pathol., 31(8), 955-960. DOI: 10.1053/ hupa.2000.16658.
Tozzi, C.A., Thakker-Varia, S., Yu, S.Y., Bannett, R.F., Peng, B.W., Poiani, G.J., Wilson, F.J. & Riley, D.J. (1998). Mast cell collagenase correlates with regression of pulmonary vascular remodeling in the rat. Am. J. Respir. Cell Mol. Biol., 18(4), 497-510. DOI: 10.1165/ ajrcmb.18.4.2536.
Travis, M.A. & Sheppard, D. (2014). TGF-β activation and function in immunity. Annu. Rev. Immunol., 32, 51-82. DOI: 10.1146/annurev-immunol-032713-120257.
Tuna, B., Yorukoglu, K., Unlu, M., Mungan, M.U. & Kirkali, Z. (2006). Association of mast cells with microvessel density in renal cell carcinomas. Eur. Urol., 50, 530- 534. DOI: 10.1016/j.eururo.2005.12.040.
Varricchi, G., Galdiero, M.R., Loffredo, S., Marone, G., Iannone, R., Marone, G. & Granata, F. (2017). Are Mast Cells MASTers in Cancer?. Front. Immunol. 12; 8, 424. DOI: 10.3389/fimmu.2017.00424.
Vicente-Manzanares, M., Webb, D.J. & Horwitz, A.R. (2005). Cell migration at a glance. J. Cell Sci., 118(Pt 21), 4917- 4919. DOI: 10.1242/jcs.02662.
Visciano, C., Liotti, F., Prevete, N., Cali, G., Franco, R., Collina, F., de Paulis, A., Marone, G., Santoro, M. & Melillo, R.M.(2015). Mast Cells induce epithelialto- mesenchymal transition and stem cell features in human thyroid cancer cells through an IL-8-Akt-Slug pathway. Oncogene, 34(40), 5175–5186. DOI: 10.1038/ onc.2014.441.
Whiteside, T.L. (2008). The tumor microenvironment and its role in promoting tumor growth. Oncogene, 27, 5904- 5912. DOI: 10.1038/onc.2008.271.
Wright, S.H., Brown, J., Knight, P.A., Thornton, E.M., Kilshaw, P.J, & Miller, H.R. (2002). Transforming growth factor-beta1 mediates coexpression of the integrin subunit alphaE and the chymase mouse mast cell protease-1 during the early differentiation of bone marrow-derived mucosal mast cell homologues. Clin. Exp. Allergy., 32(2), 315-324. DOI: 10.1046/j.1365-2222.2002.01233.x.
Yang, N., Higuchi, O., Ohashi, K., Nagata, K., Wada, A., Kangawa, K., Nishida, E. & Mizuno, K. (1998). Cofilin phosphorylation by LIM-kinase 1 and its role in Racmediated actin reorganization. Nature, 25; 393(6687), 809-812. DOI: 10.1038/31735.
Yoshimura T. (2017). The production of monocyte chemoattractant protein-1 (MCP-1)/CCL2 in tumor microenvironments. Cytokine. 98, 71-78. DOI: 10.1016/j. cyto.2017.02.001.
Zhang, Y. E. (2009). Non-Smad pathways in TGF-β signaling. Cell Res., 19(1), 128–139. DOI: 10.1038/cr.2008.328.
Zhao, W., Gomez, G., Yu, S.H., Ryan, J.J. & Schwartz, L.B. (2008). TGF-beta1 attenuates mediator release and de novo Kit expression by human skin mast cells through a Smad-dependent pathway. J. Immunol., 15; 181(10), 7263-7272. DOI: 10.4049/jimmunol.181.10.7263.