2020, Número 3
<< Anterior Siguiente >>
Odovtos-Int J Dent Sc 2020; 22 (3)
Influencia de la relación polvo-gel sobre las propiedades fisicoquímicas de un sellador de silicato de calcio
Torres FFE, Perinoto P, Bosso-Martelo R, Chávez-Andrade GM, Guerreiro-Tanomaru JM, Tanomaru-Filho M
Idioma: Ingles.
Referencias bibliográficas: 38
Paginas: 154-162
Archivo PDF: 210.67 Kb.
RESUMEN
Las diferencias en la proporción líquido/polvo pueden afectar las propiedades
de los materiales a base de silicato de calcio. Este estudio evaluó la influencia de la
proporción polvo/gel en las propiedades fisicoquímicas del cemento NeoMTA Plus. El
tiempo de fraguado (minutos), la fluidez (mm y mm
²), el pH (en diferentes períodos),
la radiopacidad (mmAl) y la solubilidad (% de pérdida de masa) fueron evaluados
utilizando las consistencias para el material de reparación radicular (NMTAP-RP; 3
cucharadas de polvo/2 gotas de gel) y para cemento sellador del conducto radicular
(NMTAP-SE; 3 cucharadas de polvo/3 gotas de gel), en comparación con el cemento
Biodentine (BIO) y el cemento TotalFill BC (TFBC). El análisis estadístico se realizó
utilizando las pruebas ANOVA y Tukey unidireccionales (α=0.05). BIO tuvo el tiempo
de fraguado más corto, seguido de NMTAP-RP y NMTAP-SE. TFBC mostró el mayor
tiempo de fraguado y radiopacidad. BIO, NMTAP-RP y NMTAP-SE tuvieron una
radiopacidad similar. Todos los materiales promovieron un pH alcalino. NMTAP-RP/
SE tuvieron una solubilidad menor que BIO y TFBC. Con respecto a la fluidez, TFBC
tuvo los valores más altos, seguido de NMTAP-SE y NMTAP-RP. BIO tuvo la fluidez
más baja. En conclusión, NMTAP en la relación polvo/gel mostró un pH alto y una baja
solubilidad. El aumento en la proporción de polvo disminuyó el tiempo de fraguado y
la fluidez. Estos hallazgos son importantes con respecto a su consistencia y tiempo de
trabajo durante la aplicación clínica.
REFERENCIAS (EN ESTE ARTÍCULO)
Tanomaru-Filho M., Viapiana R., GuerreiroTanomaru J.M. From MTA to New Biomaterials Based on Calcium Silicate. Odovtos-Int. J. Dental Sc. 2016; 18 (1): 18-22.
Grazziotin-Soares R., Nekoofar M.H., Davies T., Hubler R., Meraji N., Dummer P.M.H. Crystalline phases involved in the hydration of calcium silicate-based cements: Semi-quantitative Rietveld X-ray diffraction analysis. Aust Endod J. 2019; 45 (1): 26-32.
Cordeiro M.M., Santos A.S., Reyes C.J.F. Mineral Trioxide Aggregate and Calcium Hydroxide Promotes In Vivo Intratubular Mineralization. Odovtos-Int. J. Dental Sc. 2016;18 (1): 49-59.
Camilleri J., Formosa L., Damidot D. The setting characteristics of MTA Plus in different environmental conditions. Int Endod J. 2013; 46 (9): 831-40.
Parirokh M., Torabinejad M. Mineral trioxide aggregate: a comprehensive literature review- -Part I: chemical, physical, and antibacterial properties. J Endod. 2010; 36 (1): 16-27.
Keskin C., Sariyilmaz E., Kele S.A. The effect of bleaching agents on the compressive strength of calcium silicate-based materials. Aust Endod J. 2019; 45 (3): 311-16.
Camilleri J. Staining Potential of Neo MTA Plus, MTA Plus, and Biodentine Used for Pulpotomy Procedures. J Endod. 2015;41 (7): 1139-45.
Tran D., He J., Glickman G. N., Woodmansey K. F. Comparative Analysis of Calcium Silicate-based Root Filling Materials Using an Open Apex Model. J Endod. 2016; 42 (4): 654-8.
Siboni F., Taddei P., Prati C., Gandolfi M.G. Properties of NeoMTA Plus and MTA Plus cements for endodontics. Int Endod J. 2017; 50 Suppl 2: e83-e94.
Urkmez E.S. Pinar Erdem A. Bioactivity evaluation of calcium silicate-based endodontic materials used for apexification. Aust Endod J. 2020; 46 (1): 60-67.
McMichael G. E., Primus C.M., Opperman L.A. Dentinal Tubule Penetration of Tricalcium Silicate Sealers. J Endod. 2016; 42 (4): 632-6.
Singh S., Podar R., Dadu S., Kulkarni G., Purba R. Solubility of a new calcium silicatebased root-end filling material. J Conserv Dent. 2015;18 (2): 149-53.
Camilleri J., Sorrentino F., Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater. 2013; 29 (5): 580-93.
Tanomaru-Filho M., Torres F. F. E., ChavezAndrade G.M., de Almeida M., Navarro L.G., Steier L., Guerreiro-Tanomaru J.M. Physicochemical Properties and Volumetric Change of Silicone/Bioactive Glass and Calcium Silicate-based Endodontic Sealers. J Endod. 2017; 43 (12): 2097-101.
Camilleri J. Is Mineral Trioxide Aggregate a Bioceramic? Odovtos-Int. J. Dental Sc. 2016; 18 (1):13-17.
Xuereb M., Vella P., Damidot D., Sammut C. V., Camilleri J. In situ assessment of the setting of tricalcium silicate-based sealers using a dentin pressure model. J Endod. 2015; 41 (1): 111-24.
Zhou H.M., Shen Y., Zheng W., Li L., Zheng Y.F., Haapasalo M. Physical properties of 5 root canal sealers. J Endod. 2013; 39 (10): 1281-6.
Zordan-Bronzel C.L., Esteves Torres F.F., Tanomaru-Filho M., Chavez-Andrade G.M., Bosso-Martelo R., Guerreiro-Tanomaru J.M. Evaluation of Physicochemical Properties of a New Calcium Silicate-based Sealer, Bio-C Sealer. J Endod. 2019; 45 (10): 1248-52.
Cavenago B.C., Pereira T.C., Duarte M.A., Ordinola-Zapata R, Marciano MA, Bramante CM, Bernardineli N. Influence of powderto-water ratio on radiopacity, setting time, pH, calcium ion release and a micro-CT volumetric solubility of white mineral trioxide aggregate. Int Endod J. 2014; 47 (2): 120-6.
Fridland M., Rosado R. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. J Endod. 2003; 29 (12): 814-7.
Carvalho-Junior J.R., Correr-Sobrinho L., Correr A.B., Sinhoreti M.A., Consani S., Sousa-Neto M.D. Solubility and dimensional change after setting of root canal sealers: a proposal for smaller dimensions of test samples. J Endod. 2007; 33 (9): 1110-6.
Parirokh M., Torabinejad M., Dummer P.M.H. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J. 2018; 51.(2):.177-205.
Camilleri J. Characterization of hydration products of mineral trioxide aggregate. Int Endod J. 2008; 41 (5): 408-17.
Jimenez-Sanchez M.D.C., Segura-Egea J.J., Diaz-Cuenca A. Higher hydration performance and bioactive response of the new endodontic bioactive cement MTA HP repair compared with ProRoot MTA white and NeoMTA plus. J Biomed Mater Res B Appl Biomater. 2019;107 (6): 2109-20.
Quintana R.M., Jardine A.P., Grechi T.R., Grazziotin-Soares R., Ardenghi D.M., Scarparo R.K., Grecca F.S., Kopper P.M.P. Bone tissue reaction, setting time, solubility, and pH of root repair materials. Clin Oral Investig. 2019; 23 (3): 1359-66.
Dawood A.E., Manton D.J., Parashos P., Wong R., Palamara J., Stanton D.P., Reynolds E.C. The physical properties and ion release of CPP-ACP-modified calcium silicate-based cements. Aust Dent J. 2015; 60 (4): 434-44.
Poggio C., Dagna A., Ceci M., Meravini M.V., Colombo M., Pietrocola G. Solubility and pH of bioceramic root canal sealers: A comparative study. J Clin Exp Dent. 2017;9(10):e1189-e94.
Gandolfi M.G., Siboni F., Prati C. Properties of a novel polysiloxane-guttapercha calcium silicate-bioglass-containing root canal sealer. Dent Mater. 2016; 32 (5): e113-26.
Okabe T., Sakamoto M., Takeuchi H., Matsushima K. Effects of pH on mineralization ability of human dental pulp cells. J Endod. 2006; 32 (3): 198-201.
Candeiro G.T., Correia F.C., Duarte M.A., Ribeiro-Siqueira D.C., Gavini G. Evaluation of radiopacity, pH, release of calcium ions, and flow of a bioceramic root canal sealer. J Endod. 2012; 38 (6): 842-5.
Kaup M., Schafer E., Dammaschke T. An in vitro study of different material properties of Biodentine compared to ProRoot MTA. Head Face Med. 2015;11:16.
Ochoa-Rodriguez V.M., Tanomaru-Filho M., Rodrigues E.M., Guerreiro-Tanomaru J.M., Spin-Neto R., Faria G. Addition of zirconium oxide to Biodentine increases radiopacity and does not alter its physicochemical and biological properties. J Appl Oral Sci. 2019; 27: e20180429.
Padmanabhan P., Das J., Kumari R.V., Pradeep P.R., Kumar A., Agarwal S. Comparative evaluation of apical microleakage in immediate and delayed postspace preparation using four different root canal sealers: An in vitro study. J Conserv Dent. 2017; 20 (2): 86-90.
Tanomaru-Filho M., Torres F.F.E., BossoMartelo R., Chavez-Andrade G.M., Bonetti-Filho I., Guerreiro-Tanomaru J.M. A Novel Model for Evaluating the Flow of Endodontic Materials Using Micro-computed Tomography. J Endod. 2017; 43 (5): 796-800.
Gandolfi M.G., Siboni F., Botero T., Bossu M., Riccitiello F., Prati C. Calcium silicate and calcium hydroxide materials for pulp capping: biointeractivity, porosity, solubility and bioactivity of current formulations. J Appl Biomater Funct Mater. 2015;13 (1): 43-60.
Elyassi Y., Moinzadeh A.T., Kleverlaan C.J. Characterization of Leachates from 6 Root Canal Sealers. J Endod. 2019; 45 (5): 623-27.
Williamson A.E., Dawson D.V., Drake D.R., Walton R.E., Rivera E.M. Effect of root canal filling/sealer systems on apical endotoxin penetration: a coronal leakage evaluation. J Endod. 2005; 31 (8): 599-604.
Vouzara T., Dimosiari G., Koulaouzidou E.A., Economides N. Cytotoxicity of a New Calcium Silicate Endodontic Sealer. J Endod. 2018; 44 (5): 849-52.