2020, Número 4
<< Anterior Siguiente >>
salud publica mex 2020; 62 (4)
Nebulización térmica intradomiciliar de la mezcla de flupyradifurona y transflutrina en mosquitos Aedes aegypti susceptibles y resistentes a piretroides en el Sur de México
Ordoñez-González JG, Cisneros-Vázquez LA, Danis-Lozano R, Valdez-Delgado KM, Fernández-Salas I, Penilla-Navarro RP, Saavedra-Rodríguez K, Black IVWC, Rodríguez AD
Idioma: Español
Referencias bibliográficas: 27
Paginas: 432-438
Archivo PDF: 361.68 Kb.
RESUMEN
Objetivo. Evaluar la efectividad de la mezcla de flupyradifurona
26.3 g/L y transflutrina 52.5 g/L aplicada como niebla
térmica a mosquitos
Aedes vectores de virus dengue, Zika y
chikungunya.
Material y métodos. Se colocaron grupos
de 15 mosquitos de
Ae. aegypti (susceptibles y resistentes
a piretroides) dentro de jaulas, en sala, recámara y cocina.
Posteriormente, se aplicó la mezcla de flupyradifurona y transflutrina
dentro de las viviendas a una dosis de 2 y 4 mg/m
3,
respectivamente.
Resultados. La mezcla de flupyradifurona
y transflutrina causó mortalidades de 97 a 100% sobre las
cepas de mosquitos
Aedes y su efectividad fue la misma en los
diferentes compartimentos de las viviendas.
Conclusiones.
La mezcla de flupyradifurona y transflutrina, aplicada en niebla
térmica, es una herramienta prometedora para el control de
poblaciones de mosquitos Aedes independientemente de su
estado de resistencia a insecticidas.
REFERENCIAS (EN ESTE ARTÍCULO)
Pan American Health Organization, World Health Organization. Epidemiological Update: Dengue. Washington DC: PAHO/WHO, 2019 [citado febrero 22, 2019]. Disponible en: http://iris.paho.org/xmlui/ bitstream/handle/123456789/50486/EpiUpdate22February2019_spa. pdf?sequence=2&isAllowed=y
Yactayo S, Staples JE, Millot V, Cibrelus L, Ramon-Pardo P. Epidemiology of Chikungunya in the Americas. J Infec Dis. 2016;214(5):S441-5. https:// doi.org/10.1093/infdis/jiw390
Pan American Health Organization, World Health Organization. Epidemiological Update: Neurological syndrome, congenital anomalies and Zika virus infection. Washington DC: PAHO/WHO, 2016 [citado enero 17, 2019]. Disponible en: https://www.paho.org/hq/dmdocuments/2016/2016- jan-17-cha-epi-update-zika-virus.pdf
Stoops CA, Qualls WA, Nguyen TVT, Richards SL. A review of studies evaluating insecticide barrier treatments for mosquito control From 1944 to 2018. Environ Health Insights. 2019;13:1-15. https://doi. org/10.1177/1178630219859004
Liu N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu Rev Entomol. 2015;60:537-59. https://doi. org/10.1146/annurev-ento-010814-020828
Insecticide Resistance Action Committee [Internet]. Resistance, management and modeling [citado agosto 19, 2019]. Disponible en: https:// www.irac-online.org/about/resistance/
World Health Organization. Global plan for insecticide resistance management in Malaria vectors. Francia: World Health Organization, 2012 [citado agosto 19, 2019]. Disponible en: https://www.who.int/malaria/publications/ atoz/gpirm/en/
Food and Agriculture Organization of the United Nations. Guidelines on prevention and management of pesticide resistance. Roma: FAO, 2012 [citado agosto 19, 2019]. Disponible en: http://www.fao.org/3/a-bt561e.pdf
Nauen R, Jeschke P, Velten R, Beck ME, Ebbinghaus-Kintscher U, Thielert W, et al. Flupyradifurone: a brief profile of a new butenolide insecticide. Pest Manag Sci. 2015;71:850-62. https://doi.org/10.1002/ps.3932
Kumar V, Houben K, McKenzie CL, Osborne LS. Efficacy of Eretmocerus eremicus and Flupyradifurone on Bemisia tabaci (MED whitefly), 2017. Arthropod Management Tests. 2017;42(1):1-2. https://doi.org/10.1093/ amt/tsx128
Torres-Estrada JL, Paiz-Moscoso KE, Fernández-Salas I, Achee NL, Grieco JP. Spatial repellency and other effects of transfluthrin and linalool on Aedes aegypti and Aedes albopictus. J Vector Ecol. 2019;44(1):89-93. https:// doi.org/10.1111/jvec.12332
Ogoma SB, Mmando AS, Swai JK, Horstmann S, Malone D, Killeen GF. A low technology emanator treated with the volatile pyrethroid transfluthrin confers long term protection against outdoor biting vectors of lymphatic filariasis, arboviruses and malaria 2017. PLoS Negl Trop Dis. 2017;11(4):e0005455. https://doi.org/10.1371/journal.pntd.0005455
Boubidi SC, Roiz D, Rossignol M, Chandre F, Benoit R, Raselli M, et al. Efficacy of ULV and thermal aerosols of deltamethrin for control of Aedes albopictus in Nice, France. Parasites & Vectors. 2016;9:597. https://doi. org/10.1186/s13071-016-1881-y
Perich MJ1, Davila G, Turner A, Garcia A, Nelson M. Behavior of resting Aedes aegypti (Culicidae: Diptera) and its relation to ultra-low volume adulticide efficacy in Panama City. Panama. J Med Entomol. 2000;37(4):541- 6. https://doi.org/10.1603/0022-2585-37.4.541
Georghiou GP, Taylor CE. Factors influencing the evolution of resistance. In: E. H. GLASS (ed.). Pesticide resistance: strategies and tactics for management. Washington DC: National Academy of Sciences, 1986:157-69.
López-Solís AD, Castillo-Vera A, Cisneros J, Solís-Santoyo F, Penilla- Navarro RP, Black IV WC, et al. Resistencia a insecticidas en Aedes aegypti y Ae. albopictus (Díptera: Culicidae) de Tapachula, Chiapas México. Salud Publica Mex. 2019. https://doi.org/10.21149/10131
Centers for Diseases Control. Guideline for Evaluating Insecticide Resistance in Vectors Using the CDC Bottle Bioassay. Atlanta: CDC, 2012 [citado agosto 19, 2019]. Disponible en: https://www.cdc.gov/malaria/ resources/pdf/fsp/ir_manual/ir_cdc_bioassay_en.pdf
Saavedra-Rodríguez K, Urdaneta-Márquez L, Rajatileka S, Moulton M, Flores AE, Fernández-Salas I, et al. A mutation in the voltage-gated sodium channel gene associated with pyrethroid resistance in Latin American Aedes aegypti. Insect Mol Biol. 2007;16:785-98. https://doi.org/10.1111/j.1365- 2583.2007.00774.x
World Health Organization. Operational manual on the application of insecticides for control of the mosquito vectors of malaria and other diseases. Ginebra: WHO, 1996. [citado agosto 19, 2019]. Disponible en: https://apps.who.int/iris/handle/10665/63254
Organización Mundial de la Salud. Resistencia a los insecticidas y lucha contra los vectores. 17 Informe del Comité de Expertos de la OMS en Insecticidas. Ginebra: WHO, 1970 [citado agosto 19, 2019]. Disponible en: https://apps.who.int/iris/handle/10665/38277
Zar J. Biostatistical analysis (4th ed). USA: Prentice Hall, 1999.
Curtis CF. Theoretical models of the use of insecticides mixtures for the management of resistance. Bull Ent Res. 1985;75:259-65. https://doi. org/10.1017/S0007485300014346
Marcombe S, Carron A, Darriet F, Etienne M, Agnew P, Tolosa M, et al. Reduced efficacy of pyrethroid space sprays for Dengue control in an area of Martinique with pyrethroid resistance. Am J Trop Med Hyg. 2009;80(5):745-51. https://doi.org/10.4269/ajtmh.2009.80.745
Vazquez-Prokopec GM, Medina-Barreiro A, Che-Mendoza A, Dzul- Manzanilla F, Correa-Morales F, Guillermo-May G. Deltamethrin resistance in Aedes aegypti results in treatment failure in Merida, Mexico. PLoS Negl Trop. 2017;11(6):e0005656. https://doi.org/10.1371/journal.pntd.0005656
Berge JB, Feyereisen R, Amichot M. Cytochrome P450 monooxigenases and insecticide resistance in insects. Philos Trans R Soc Lond B Biol Sci. 1998;353:1701-5. https://doi.org/10.1098/rstb.1998.0321
Horstmann S, Sonneck R. Contact bioassays with phenoxybenzyl and tetrafluorobenzyl pyrethroids against target-site and metabolic resistance. PLoS ONE 2016;11(3):e0149738. https://doi.org/10.1371/journal. pone.0149738
World Health Organization. Space spray application of insecticides for vector and public health pest control. A practitioner’s guide. Ginebra: WHO, 2003 [citado agosto 19, 2019]. Disponible en: https://apps.who.int/ iris/handle/10665/68057