2020, Número 1
<< Anterior Siguiente >>
Med Cutan Iber Lat Am 2020; 48 (1)
Secuenciación de nueva generación: utilidad en dermatología
Pinedo-Donelli S, Ball E
Idioma: Español
Referencias bibliográficas: 59
Paginas: 47-62
Archivo PDF: 682.07 Kb.
RESUMEN
En el año 2001 se obtuvo el primer «borrador» del genoma humano, creado al utilizar un método llamado secuenciación de Sanger, que consistía en la identificación del orden o secuencia de las bases nitrogenadas dentro de la molécula de ADN. Por tratarse de un método engorroso y complicado la secuenciación del genoma tardó aproximadamente 10 años y el costo fue muy elevado. Esto llevó a los investigadores a desarrollar nuevas técnicas que hicieran posible conocer la naturaleza de la molécula de ADN de múltiples genes y organismos de manera rápida y a menor costo. Su finalidad era poder determinar las alteraciones genéticas o mutaciones que dan origen a enfermedades y permitir conocer la identidad de un determinado organismo a través de su genoma. Por ejemplo, en el caso de las epidemias que son causadas por un agente desconocido, al descifrar la secuencia de los nucleótidos que integran su ADN podría conocerse la identidad del agente causal, al comparar los datos obtenidos con un genoma de referencia. Es así como surge la secuenciación de nueva generación como un método que logra secuenciar múltiples fragmentos de ADN en tiempo real y en paralelo, a fin de descifrar el genoma de un determinado organismo o determinar los genes responsables de una enfermedad en un tiempo muy corto. Son múltiples los usos que se le dan a esta técnica en dermatología, por ejemplo, para decidir conductas terapéuticas, predecir el pronóstico y la respuesta al tratamiento en enfermedades malignas e inflamatorias de la piel, entre otros.
REFERENCIAS (EN ESTE ARTÍCULO)
National Human Genome Research Institute. An overview of the Human Genome Project [Internet]. 2016 [citado 1 de julio de 2017]. Disponible en: https://www.genome.gov/12011238/an-overview-of-the-human-genome-project/
National Human Genome Research Institute. DNA sequencing fact sheet [Internet]. 2015 [citado 1 de julio de 2017]. Disponible en: https://www.genome.gov/10001177/dna-sequencing-fact-sheet/.
National Human Genome Research Institute. Human Genome Project completion: frequently asked questions [Internet]. 2010 [citado 1 de julio de 2017]. Disponible en: https://www.genome.gov/11006943/human-genome-project-completion-frequently-asked-questions/.
Khan Academy. DNA sequencing [Internet]. 2015 [citado 30 de junio de 2017]. Disponible en: https://www.khanacademy.org/science/biology/biotech-dna-technology/dna-sequencing-pcr-electrophoresis/a/dna-sequencing
Shendure J, Ji H. Next-generation DNA sequencing. Nat Biotechnol. 2008; 26 (10): 1135-1145.
Garrido-Cardenas JA, Garcia-Maroto F, Álvarez-Bermejo JA, Manzano-Agugliaro F. DNA sequencing sensors: an overview. Sensors. 2017; 17 (588): 1-15.
Bitesize Bio. Beginner’s Guide to Next Generation Sequencing-Bitesize Bio [Internet]. 2014 [citado 29 de junio de 2017]. Disponible en: http://bitesizebio.com/21193/a-beginners-guide-to-next-generation-sequencing-ngs-technology/.
Behjati S, Tarpey PS. What is next generation sequencing? Arch Dis Child Educ Pr Ed. 2013;98: 236-238.
Sarig O, Sprecher E. The molecular revolution in cutaneous biology: era of next-generation sequencing. J Invest Dermatol. 2017; 137 (5): 79-82.
Mellmann A, Harmsen D, Cummings CA, Zentz EB, Leopold SR, Rico A et al. Prospective genomic characterization of the german enterohemorrhagic Escherichia coli O104: H4 outbreak by rapid next generation sequencing technology. PLoS One. 2011; 6 (7) :e22751.
Buermans HPJ, Dunnen JT Den. Biochimica et Biophysica acta next generation sequencing technology: advances and applications. BBA-Mol Basis Dis [Internet]. 2014; 1842 (10): 1932-1941. Disponible en: http://dx.doi.org/10.1016/j.bbadis.2014.06.015.
Shen T, Stadt SHP De, Yeat NC, Lin JC. Clinical applications of next generation sequencing in cancer: from panels, to exomes, to genomes. Front Genet. 2015; 6: 1-9.
Titeux M, Izmiryan A, Hovnanian A. The molecular revolution in cutaneous biology: emerging landscape in genomic dermatology: new mechanistic ideas, gene editing, and therapeutic breakthroughs. J Invest Dermatol [Internet]. 2016; 137 (5): 123-129. Disponible en: http://dx.doi.org/10.1016/j.jid.2016.08.038.
Anbunathan H, Bowcock AM. The molecular revolution in cutaneous biology: the era of genome-wide association studies and statistical, big data, and computational topics. J Invest Dermatol [Internet]. 2016; 137 (5): 113-118. Disponible en: http://dx.doi.org/10.1016/j.jid.2016.03.047.
Mcgrath JA. The molecular revolution in cutaneous biology: era of molecular diagnostics for inherited skin diseases. J Immunol [Internet]. 2017; 137 (5): 83-86. Disponible en: http://dx.doi.org/10.1016/j.jid.2016.02.819.
Takeichi T, Nanda A, Liu L, Salam A, Campbell P, Fong K et al. Impact of next generation sequencing on diagnostics in a genetic skin disease clinic. Exp Dermatol. 2013; 22 (1): 825-831.
Has C, Küsel J, Reimer A, Hoffmann J, Schauer F, Zimmer A. The position of targeted next-generation sequencing in epidermolysis bullosa diagnosis. Acta Derm Veneorol. 2018; 98: 437-440.
Rajkumar S, Watson IR. Molecular characterisation of cutaneous melanoma: creating a framework for targeted and immune therapies. Br J Cancer [Internet]. 2016; 115 (2): 145-155. Disponible en: http://dx.doi.org/10.1038/bjc.2016.195.
Richtig G, Hoeller C, Kashofer K, Aigelsreiter A, Heinemann A, Kwong LN et al. Beyond the BRAFV600E hotspot-Biology and clinical implications of rare BRAF gene mutations in melanoma patients. Br J Dermatol. 2017; 177 (4): 936-944.
Serratì S, Petriella D. Next-generation sequencing: advances and applications in cancer diagnosis. Onco Targ Ther. 2016; 9: 7355-7365.
Carlson JA, Candido J, Xavier C, Tarasen A, Sheehan CE, Otto G et al. Next-generation sequencing reveals pathway activations and new routes to targeted therapies in cutaneous metastatic melanoma. Am J Dermatopathol. 2017; 39 (1): 1-13.
Reiman A, Kikuchi H, Scocchia D, Smith P, Tsang YW, Snead D et al. Validation of an NGS mutation detection panel for melanoma. BMC Cancer. 2017; 17 (50): 1-7.
Bustos BDU, Estal RM, Simó GP, Juan I De, Muñoz BE, Serna MR et al. Towards personalized medicine in melanoma: implementation of a clinical next-generation sequencing panel. Sci Rep. 2017; 7 (495): 1-11.
Siroy AE, Boland GM, Milton DR, Roszik J, Frankian S, Malke J et al. Beyond BRAFV600: clinical mutation panel testing by next-generation sequencing in advanced melanoma. J Invest Dermatol. 2015; 135 (2): 508-515.
Gandolfi G, Dallaglio K, Longo C, Moscarella E, Lallas A, Alfano R. Contemporary and potential future molecular diagnosis of melanoma. Expert Rev Mol Diagn. 2016; 16 (9): 975-985.
Griewank KG, Schilling B. Next-generation sequencing to guide treatment of advanced melanoma. Am J Clin Dermatol. 2017; 18 (3): 303-310.
Levesque MP, Cheng PF, Raaijmakers MIG, Saltari A, Dummer R. Metastatic melanoma moves on: translational science in the era of personalized medicine. Cancer Met Rev. 2017; 36 (1): 7-21.
Cosgarea I, Ugurel S, Sucker A, Livingstone E, Hillen U, Horn S et al. Targeted next generation sequencing of mucosal melanomas identifies frequent NF1 and RAS mutations. Oncotarget. 2017; 8 (25): 40683-40692.
Johnson DB, Frampton GM, Rioth MJ, Yusko E, Xu Y, Guo X et al. Targeted next generation sequencing identifies markers of response to PD-1 blockade. Cancer Immunol Res. 2016; 4 (11): 959-968.
Reddy BY, Miller DM, Tsao H. Somatic driver mutations in melanoma. Cancer. 2017; 123 (S11): 2104-2117.
Badal B, Solovyov A, Cecilia S Di, Chan JM, Chang L, Iqbal R, et al. Transcriptional dissection of melanoma identifies a high-risk subtype underlying TP53 family genes and epigenome deregulation. JCI Insight. 2017; 2 (8): 1-15.
Faden DL, Arron ST, Heaton CM, Derisi J, South AP, Wang SJ. Targeted next-generation sequencing of TP53 in oral tongue carcinoma from non- smokers. J Otolaryngol Head Neck Surg [Internet]. 2016; 45 (1): 45-47. Disponible en: http://dx.doi.org/10.1186/s40463-016-0160-4.
Ikeda S, Goodman AM, Cohen PR, Jensen TJ, Ellison CK, Frampton G et al. Metastatic basal cell carcinoma with amplification of PD-L1: exceptional response to anti-PD1 therapy. NPJ Genom Med. 2016; Epub 2016: 1-12.
Kita R, Fraser HB. Local adaptation of sun-exposure-dependent gene expression regulation in human skin. PLoS Genet. 2016; 12 (10): 1-18.
Sand M, Bechara FG, Gambichler T, Sand D, Friedländer R, Bromba M et al. Next generation sequencing of the basal cell carcinoma miRNome and a description of novel microRNA candidates under neoadjuvant vismodegib therapy: an integrative molecular and surgical case study. Ann Oncol. 2016; 27 (2): 332-338.
Al-rohil RN, Tarasen AJ, Carlson JA, Wang K, Johnson A, Yelensky R et al. Evaluation of 122 advanced-stage cutaneous squamous cell carcinomas by comprehensive genomic profiling opens the door for new routes to targeted therapies. Cancer. 2016; 122 (2): 249-257.
Ganzenmueller T, Yakushko Y, Kluba J, Henke-Gendo C, Gutzmer R, Schulz TF. Next-generation sequencing fails to identify human virus sequences in cutaneous squamous cell carcinoma. Int J Cancer. 2012; 131 (7): E1173-1179.
Ganzenmueller T, Hage E, Yakushko Y, Kluba J, Woltemate S, Schacht V et al. No human virus sequences detected by next-generation sequencing in benign verrucous skin tumors occurring in BRAF-inhibitor-treated patients. Exp Dermatol. 2013; 22 (16): 725-729.
Mroz EA, Rocco JW. Intra-tumor heterogeneity in head and neck cancer and its clinical implications. J Otolaryngol Head Neck Surg [Internet]. 2016; 2 (2): 60-67. Disponible en: http://dx.doi.org/10.1016/j.wjorl.2016.05.007.
Tanese K, Nakamura Y, Hirai I, Funakoshi T. Updates on the systemic treatment of advanced non-melanoma skin cancer. Front Med. 2019; 6: 1-10.
Cao X, Wa Q, Wang Q, Li L, Liu X, An L et al. International immunopharmacology high throughput sequencing reveals the diversity of TRB-CDR3 repertoire in patients with psoriasis vulgaris. Int Immunopharmacol. 2016; 40 (2016): 487-491.
Castelino M, Eyre S, Moat J, Fox G, Martin P, Ho P et al. Optimisation of methods for bacterial skin microbiome investigation?: primer selection and comparison of the 454 versus MiSeq platform. BMC Microbiol [Internet]. 2017; 17 (23): 1-12. Disponible en: http://dx.doi.org/10.1186/s12866-017-0927-4.
Zhou X, He Y, Kuang Y, Li J, Zhang J, Chen M et al. Whole exome sequencing in psoriasis patients contributes to studies of acitretin treatment difference. Int J Mol Sci. 2017;18(295):1–11.
Joyce CE, Zhou X, Xia J, Ryan C, Thrash B, Menter A et al. Deep sequencing of small RNAs from human skin reveals major alterations in the psoriasis miRNAome. Hum Mol Gen. 2011; 20 (20): 4025-4040.
Li B, Tsoi LC, Swindell WR, Gudjonsson JE, Johnston A, Ding J, et al. Transcriptome analysis of psoriasis in a large case-control sample: RNA-seq provides insights into disease mechanisms. J Invest Dermatol. 2015; 134 (7): 1828-1838.
Samaranayake N, Fernando SD, Neththikumara NF, Rodrigo C, Karunaweera ND, Dissanayake VHW. Association of HLA class I and II genes with cutaneous leishmaniasis?: a case control study from Sri Lanka and a systematic review. BMC Infect Dis [Internet]. 2016; 16 (292): 1-9. Disponible en: http://dx.doi.org/10.1186/s12879-016-1626-8.
Benjak A, Singh P, Pontes MAA, Gonc HS, Silveira MIS, Cruz R et al. Whole genome sequencing distinguishes between relapse and reinfection in recurrent leprosy cases. PLoS Negl Trop Dis. 2017; 11 (6): 1-13.
Wang D, Zhang D, Feng J, Li G, Li X, Yu X. Common variants in the PARL and PINK1 genes increase the risk to leprosy in Han Chinese from South China. Sci Rep. 2016; 23 (6): 1-9.
Soares RC, Camargo-penna PH, Moraes VCS De. Dysbiotic bacterial and fungal communities not restricted to clinically Affected Skin Sites in Dandruff. Front Cell Infect Microbiol. 2016; 6 (157): 1-10.
Park M, Yang YC, Lee W, Jung WH. Whole genome sequencing analysis of the cutaneous pathogenic yeast Malassezia restricta and identification of the major lipase expressed on the scalp of patients with dandruff. Mycoses. 2017; 60 (3): 188-197.
Weng W, Weng W, Armstrong R, Arai S, Desmarais C, Hoppe R et al. Minimal residual disease monitoring with high-throughput sequencing of T cell receptors in cutaneous T cell lymphoma. Sci Transl Med. 2013; 171 (5): 1-9.
Damsky WE, Choi J. Genetics of cutaneous T cell lymphoma: from bench to bedside. Curr Treat Options Oncol [Internet]. 2016; 17 (33): 1-14. Disponible en: http://dx.doi.org/10.1007/s11864-016-0410-8.
Sufficool KE, Lockwood CM, Abel HJ, Hagemann IS, Schumacher JA, Kelley TW et al. T-cell clonality assessment by next-generation sequencing improves detection sensitivity in mycosis fungoides. J Am Dermatology [Internet]. 2015; 73 (2): 228-236. Disponible en: http://dx.doi.org/10.1016/j.jaad.2015.04.030.
Mcgirt LY, Jia P, Baerenwald DA, Duszynski RJ, Dahlman KB, Zic JA et al. Whole-genome sequencing reveals oncogenic mutations in mycosis fungoides. Blood. 2015; 126 (4): 508-520.
Iżykowska K, Przybylski GK, Gand C, Braun FC, Grabarczyk P, Kuss AW et al. Genetic rearrangements result in altered gene expression and novel fusion transcripts in Sézary syndrome. Oncotarget. 2017; 8 (24): 39627-39639.
Chevret E, Merlio J. Sézary Syndrome: translating genetic diversity into personalized medicine. J Invest Dermatol [Internet]. 2016; 136 (7): 1319-1324. Disponible en: http://dx.doi.org/10.1016/j.jid.2016.04.027.
Wang L, Ni X, Covington KR, Yang BY, Shiu J, Zhang X, et al. Genomic profiling of Sézary Syndrome identifies alterations of key T-cell signaling and differentiation genes Linghua. Nat Genet. 2016; 47 (12): 1426-1434.
Maekawa K, Nishikawa J, Kaniwa N, Sugiyama E, Koizumi T. Development of a rapid and inexpensive assay for detecting a surrogate genetic polymorphism of HLA-B*58:01: a partially predictive but useful biomarker for allopurinol-related Stevens-Johnson Syndrome/toxic epidermal necrolysis in Japanese. Drug Metab Pharmacokinet. 2012; 27 (4): 447-450.
Pirmohamed M. Genetics and the potential for predictive tests in adverse drug reactions. Chem Immunol Allergy. 2012; 97: 18-31.