2020, Número S3
<< Anterior Siguiente >>
Cardiovasc Metab Sci 2020; 31 (S3)
Potenciales efectos proarrítmicos de la farmacoterapia contra SARS-CoV-2
Medeiros-Domingo A, Carrasco OF, Berni-Betancourt A
Idioma: Inglés [English version]
Referencias bibliográficas: 33
Paginas: 199-204
Archivo PDF: 211.75 Kb.
RESUMEN
La pandemia por el virus SARS-CoV-2 causante de la enfermedad COVID-19 representa un reto mundial dada su alta tasa de transmisión y ausencia de una terapia efectiva o vacuna. Este escenario ha propiciado el uso de diversos fármacos que
in vitro han demostrado un posible efecto contra el virus. Sin embargo, el tiempo no ha sido suficiente para evaluar su efectividad clínica con el adecuado rigor científico que precede a la prescripción de medicamentos. El uso de cloroquina/hidroxicloroquina, azitromicina y esquemas antivirales ha sido propuesto por diversos grupos, apoyado por una serie de pacientes limitada en número. Si bien puede representar la única esperanza para muchos enfermos, es importante conocer los principales efectos adversos asociados al uso de estas drogas y seleccionar mejor a los pacientes que puedan beneficiarse de ellas. El riesgo de arritmias ventriculares incrementa tanto por el uso de fármacos como por la gravedad de la propia enfermedad viral.
REFERENCIAS (EN ESTE ARTÍCULO)
Huang C, Wang Y, Li X et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497-506.
Wang D, Hu B, Hu C. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 1061-1069. doi: 10.1001/jama.2020.1585.
Juurlink DN. Safety considerations with chloroquine, hydroxychloroquine and azithromycin in the management of SARS-CoV-2 infection. CMAJ. 2020; 192 (17): E450-E453.
Shippey EA, Wagler VD, Collamer AN. Hydroxychloroquine: An old drug with new relevance. Cleve Clin J Med. 2018; 85 (6): 459-467. doi: 10.3949/ccjm.85a.17034.
Devaux CA, Rolain JM, Colson P, Raoult D. New insights on the antiviral effects of chloroquine against coronavirus: what to expect for COVID-19? Int J Antimicrob Agents. 2020; 55 (5): 105938. doi: 10.1016/j.ijantimicag.2020.105938.
White NJ. Cardiotoxicity of antimalarial drugs. Lancet Infect Dis. 2007; 7 (8): 549-558. doi: 10.1016/S1473-3099(07)70187-1.
Mosquera RA, De Jesus-Rojas W, Stark JM et al. Role of prophylactic azithromycin to reduce airway inflammation and mortality in a RSV mouse infection model. Pediatr Pulmonol. 2018; 53 (5): 567-574. doi: 10.1002/ppul.23956.
Tran DH, Sugamata R, Hirose T, Suzuki S, Noguchi Y, Sugawara A et al. Azithromycin, a 15-membered macrolide antibiotic, inhibits influenza A(H1N1)pdm09 virus infection by interfering with virus internalization process. J Antibiot (Tokyo). 2019; 72 (10): 759-768.
Li C, Zu S, Deng YQ, Li D, Parvatiyar K, Quanquin N et al. Azithromycin protects against Zika virus infection by upregulating virus-induced type I and III interferon responses [published online ahead of print, 2019 Sep 16]. Antimicrob Agents Chemother. 2019; 63 (12): e00394-19.
Parnham MJ, Haber VE, Giamarellos-Bourboulis EJ, Perletti G, Verleden GM, Vos R. Azithromycin: Mechanisms of action and their relevance for clinical applications. Pharmacol Ther. 2014; 143 (2): 225-245. doi: 10.1016/j.pharmthera.2014.03.003.
Patel H, Calip GS, DiDomenico RJ, Schumock GT, Suda KJ, Lee TA. Prevalence of cardiac risk factors in patients prescribed azithromycin before and after the 2012 FDA Warning on the risk of potentially fatal heart rhythms. Pharmacotherapy. 2020; 40 (2): 107-115.
Albert RK, Schuller JL, Network CCR. Macrolide antibiotics and the risk of cardiac arrhythmias. Am J Respir Crit Care Med. 2014; 189 (10): 1173-180.
Yang Z, Prinsen JK, Bersell KR, Shen W, Yermalitskaya L, Sidorova T et al. Azithromycin causes a novel proarrhythmic syndrome. Circ Arrhythm Electrophysiol. 2017; 10 (4): e003560.
Chan JF, Yao Y, Yeung ML et al. Treatment with lopinavir/ritonavir or interferon-β1b improves outcome of MERS-CoV infection in a nonhuman primate model of common marmoset. J Infect Dis. 2015; 212 (12): 1904-1913.
Cao B, Wang Y, Wen D et al. A trial of lopinavir-ritonavir in adults hos- pitalized with severe Covid-19. N Engl J Med. 2020. doi: 10.1056/nejmoa2001282.
Sanders J, Monogue M, Jodlowski T et al. Pharmacologic treatments for coronavirus disease 2019 (COVID-19) a review. JAMA. 2020; 323 (18): 1824-1836. doi: 10.1001/jama.2020.6019.
Grein J, Ohmagari N, Shin D et al. Compassionate use of remdesivir for patients with severe Covid-19. N Engl J Med. 2020. doi: 10.1056/NEJMoa2007016.
Mehta P, McAuley DF, Brown M et al. COVID-19: consider cytokine storm syndromes and immuno-suppression. Lancet. 2020; 395 (10229): 1033-1034. doi: 10.1016/S0140-6736(20)30628-0.
Biggioggero M, Crotti C, Becciolini A, Favalli EG. Tocilizumab in the treatment of rheumatoid arthritis: An evidence-based review and patient selection. Drug Des Devel Ther. 2019; 13: 57-70. doi: 10.2147/DDDT.S150580.
Wang D, Hu B, Hu C. Clinical characteristics of 138 hospitalized patients with 2019 novel coronavirus-infected pneumonia in Wuhan, China. JAMA. 2020; 323 (11): 1061-1069. doi: 10.1001/jama.2020.1585.
Yang X, Yu Y, Xu J et al. Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study [pub-lished correction appears in Lancet Respir Med. 2020; 8 (4): e26]. Lancet Respir Med. 2020; 8 (5): 475-481. doi: 10.1016/S2213-2600(20)30079-5.
Ramos-Casals M, Brito-Zeron P, Lopez-Guillermo A et al. Adult haemophagocytic syndrome. Lancet. 2014; 383: 1503-1516.
Ruan Q, Yang K, Wang W et al. Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med. 2020. doi: 10.1007/s00134-020-05991.
Lazzerini PE, Laghi-Pasini F, Boutjdir M, Capecchi PL. Cardioimmunology of arrhythmias: the role of autoimmune and inflammatory cardiac channelopathies. Nat Rev Immunol. 2019; 19 (1): 63-64.
Lazzerini PE, Capecchi PL, Laghi-Pasini F. Systemic inflammation and arrhythmic risk: lessons from rheumatoid arthritis. Eur Heart J. 2017; 38: 1717-1727.
National Health Commission and National Administration of Traditional Chinese Medicine of the People’s Republic of China. Protocols for diagnosis and treatment of COVID-19. (7th Trial Version). (EB/OL)(2020-03-04) (2020-03-15).
Medeiros-Domingo A, Iturralde-Torres P, Ackerman MJ. Clinical and genetic characteristics of long QT syndrome. Rev Esp Cardiol. 2007; 60 (7): 739-752.
Sarganas G, Garbe E, Klimpel A, Hering RC, Bronder E, Haverkamp W. Epidemiology of symptomatic drug-induced long QT syndrome and torsade de pointes in Germany. Europace. 2014; 16 (1): 101-108.
Arunachalam K, Lakshmanan S, Maan A, Kumar N, Dominic P. Impact of drug induced long qt syn-drome: a systematic review. J Clin Med Res. 2018; 10 (5): 384-390.
Itoh H, Crotti L, Aiba T, Spazzolini C, Denjoy I, Fressart V et al. The genetics underlying acquired long QT syndrome: impact for genetic screening. Eur Heart J. 2016; 37 (18): 1456-1464.
Kannankeril P, Roden DM, Darbar D. Drug-induced long QT syndrome. Pharmacol Rev. 2010; 62 (4): 760-781.
Berno G, Zaccarelli M, Gori C, Tempestilli M, Antinori A, Perno CF et al. Analysis of single-nucleotide polymorphisms (SNPs) in human CYP3A4 and CYP3A5 genes: potential implications for the metabolism of HIV drugs. BMC Med Genet. 2014; 15: 76.
Werk AN, Cascorbi I. Functional gene variants of CYP3A4. Clin Pharmacol Ther. 2014; 96 (3): 340-348.