2020, Número 1
<< Anterior Siguiente >>
Simulación Clínica 2020; 2 (1)
Diseño y validación de un novedoso modelo de simulación para otoplastia a bajo costo
Navia A, López A, Canahuate S, Searle S, Dagnino B
Idioma: Español
Referencias bibliográficas: 39
Paginas: 9-18
Archivo PDF: 1808.02 Kb.
RESUMEN
Introducción: La otoplastia es un procedimiento que se usa para corregir las orejas prominentes. Para aprenderlo, la simulación es un método que ha revolucionado la educación médico-quirúrgica. Sin embargo, hasta donde sabemos, no existe un modelo de otoplastia adecuadamente diseñado y validado.
Objetivos: Desarrollar y validar un modelo de otoplastia a bajo costo.
Material y métodos: Diseñamos un modelo sintético de oreja prominente. Para ello, mediante un método Delphi, creamos una escala específica para otoplastia (EVOPUC) y un cuestionario de antropometría (CLA). Evaluamos a cinco expertos (cirujanos plásticos) y cinco principiantes (estudiantes). Cada participante realizó un procedimiento que fue grabado y evaluado por tres expertos cegados utilizando una escala general (OSATS), la EVOPUC, el CLA y el tiempo operatorio. Los principiantes realizaron cuatro sesiones de entrenamiento con expertos y fueron reevaluados bajo la misma metodología. Los expertos completaron una encuesta sobre validez de apariencia y contenido.
Resultados: El costo de cada modelo fue de cinco dólares. Tras el entrenamiento, los novatos mejoraron significativamente su desempeño (p ‹ 0.05), el cual fue comparable con el de los expertos. 100% de los expertos calificó el modelo como útil, y lo consideró una herramienta clave para el entrenamiento de residentes.
Conclusiones: Desarrollamos un modelo de otoplastia a bajo costo, el cual logra una adquisición significativa de habilidades en el grupo objetivo con resultados similares a los de cirujanos plásticos experimentados.
REFERENCIAS (EN ESTE ARTÍCULO)
Naumann A. Otoplasty-techniques, characteristics and risks. GMS Curr Top Otorhinolaryngol Head Neck Surg. 2007; 6: 1-14. Disponible en: http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3199845&tool=pmcentrez&rendertype=abstract.
Pawar SS, Koch CA, Murakami C. Treatment of prominent ears and otoplasty: a contemporary review. PubMed-NCBI. JAMA Facial Plast Surg. 2015; 17 (6): 449-454. doi: 10.1001/jamafacial.2015.0783.
Weerda H. Classification of congenital deformities of the auricle. Facial Plast Surg. 1988; 5: 385-388. doi: 10.1055/s-2008-1064778.
Tanzer R. Congenital deformities. In: Converse J, Ed. Reconstructive plastic surgery. Philadelphia: Saunders; 1977, p. 1671.
Madzharov MM. A new method of auriculoplasty for protruding ears. Br J Plast Surg. 1989; 42 (3): 285-290. doi: 10.1016/0007-1226(89)90148-3.
Wodak E. On the position and shape of the human auricle. Arch Klin Exp Ohren Nasen Kehlkopfheilkd. 1967; 188 (2): 331-335. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/5599755. Accessed 31 July 2017].
Farkas LG. Anthropometry of the normal and defective ear. Clin Plast Surg. 1990; 17 (2): 213-221. http://www.ncbi.nlm.nih.gov/pubmed/2189638.
Basat SO, Askeroğlu U, Aksan T, Alleyne B, Yazar M, Orman Ç, et al. New otoplasty approach: a laterally based postauricular dermal flap as an addition to mustarde and furnas to prevent suture extrusion and recurrence. Aesthetic Plast Surg. 2014; 38 (1): 83-89. doi: 10.1007/s00266-013-0269-z.
Haytoglu S, Haytoglu TG, Bayar Muluk N, Kuran G, Arikan OK. Comparison of two incisionless otoplasty techniques for prominent ears in children. Int J Pediatr Otorhinolaryngol. 2015; 79 (4): 504-510. doi: 10.1016/j.ijporl.2015.01.014.
Mashhadi S, Butler DP. A strategy for assessing otoplasty outcome intra-operatively. J Plast Reconstr Aesthetic Surg. 2012; 65 (7): 984-985. doi: 10.1016/j.bjps.2011.11.056.
Shokrollahi K. The discrete scar in prominent ear correction: a digital 3-dimensional analysis to determine the ideal incision for otoplasty: reply. Ann Plast Surg. 2015; 75 (4): 487. doi: 10.1097/SAP.0000000000000607.
Stewart KJ, Lancerotto L. Surgical otoplasty: an evidence-based approach to prominent ears correction. Facial Plast Surg Clin North Am. 2018; 26 (1): 9-18. doi: 10.1016/j.fsc.2017.09.002.
Mustarde JC. The correction of prominent ears using simple mattress sutures. Br J Plast Surg. 1963; 16: 170-178. http://www.ncbi.nlm.nih.gov/pubmed/13936895.
Furnas DW. Correction of prominent ears by conchamastoid sutures. Plast Reconstr Surg. 1968; 42 (3): 189-193. http://www.ncbi.nlm.nih.gov/pubmed/4878456.
Loh CYY, Gunn E, Pennell DJL, Athanassopoulos T. Pinnaplasty: a porcine training model. J Plast Reconstr Aesthetic Surg. 2014; 67 (6): 868-869. doi:10.1016/j.bjps.2014.01.012.
Uygur S, Ozturk C, Kwiecien G, Siemionow MZ. Sheep head model for plastic surgery training. Plast Reconstr Surg. 2013; 132 (5): 895e-896e. doi:10.1097/COC.0b013e318210f83c.
L Wu, K Pang, Y Ng, S Yeak. Proposed otoplasty model: innovative use for a hearing aid demonstration mould. The Internet Journal of Plastic Surgery. 2006; 3 (1): 1-4.
Schneider G, Voigt S, Rettinger G. Computed tomography-based training model for otoplasty. Eur Arch Oto-Rhino-Laryngology. 2016; 273 (9): 2427-2432. doi: 10.1007/s00405-015-3797-0.
Guieiro M, Guimarães R, Ricardo L, Souto M. Pinna synthetic mold for otoplasty techniques application. Braz J Otorhinolaryngol. 2018; 84 (2): 159-165. doi: 10.1016/j.bjorl.2017.01.004.
McDougall EM. Validation of surgical simulators. J Endourol. 2007; 21 (3): 244-247. doi: 10.1089/end.2007.9985.
Singh M, Ziolkowski N, Ramachandran S, Myers SR, Ghanem AM. Development of a five-day basic microsurgery simulation training course: A cost analysis. Arch Plast Surg. 2014; 41 (3): 213-217. doi: 10.5999/aps.2014.41.3.213.
Ramos P, Montez J, Tripp A, Ng CK, Gill IS, Hung AJ. Face, content, construct and concurrent validity of dry laboratory exercises for robotic training using a global assessment tool. BJU Int. 2014; 113 (5): 836-842. doi: 10.1111/bju.12559.
Zevin B, Levy JS, Satava RM, Grantcharov TP. A consensus-based framework for design, validation, and implementation of simulation-based training curricula in surgery. J Am Coll Surg. 2012; 215 (4): 580-586. doi: 10.1016/j.jamcollsurg.2012.05.035.
Carey JN, Rommer E, Sheckter C, Minneti M, Talving P, Wong AK, et al. Simulation of plastic surgery and microvascular procedures using perfused fresh human cadavers. J Plast Reconstr Aesthetic Surg. 2014; 67 (2): e42-e48. doi: 10.1016/j.bjps.2013.09.026,
Mason KF. Changes in the wind. Compos Technol. 2004; 10 (2): 26-31. doi: 10.1021/jf052913o.
Rodriguez JR, Yañez R, Cifuentes I, Varas J, Dagnino B. Microsurgery workout : a novel simulation. Plast Reconstr Surg. 2016;.138: 739-747. doi: 10.1097/PRS.0000000000002456.
Martin JA, Regehr G, Reznick R, MacRae H, Murnaghan J, Hutchison C, et al. Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg. 1997; 84 (2): 273-278. doi: 10.1002/bjs.1800840237.
Urrutia J, Besa P, Campos M, Cikutovic P, Cabezon M, Molina M, et al. The Pfirrmann classification of lumbar intervertebral disc degeneration: an independent inter- and intra-observer agreement assessment. Eur Spine J. 2016; 25 (9): 2728-2733. doi: 10.1007/s00586-016-4438-z.
Fleiss J. The design and analysis of clinical experiments. New York: Wiley; 1986.
Cicchetti D V. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psychology. Psychol Assess. 1994; 6 (4): 284-290. doi: 10.1037/1040-3590.6.4.284.
Sinceri S, Berchiolli R, Marconi M, Cioni R, Ferrari V, Ferrari M, et al. Face, content, and construct validity of a simulator for training in endovascular procedures. Minim Invasive Ther Allied Technol. 2018; 27 (6): 315-320. doi: 10.1080/13645706.2018.1458038.
Olabe J, Olabe J. Microsurgical training on an in vitro chicken wing infusion model. Surg Neurol. 2009; 72 (6): 695-699. doi: 10.1016/j.surneu.2008.12.008.
Varas J, Mejía R, Riquelme A, Maluenda F, Buckel E, Salinas J, et al. Significant transfer of surgical skills obtained with an advanced laparoscopic training program to a laparoscopic jejunojejunostomy in a live porcine model: feasibility of learning advanced laparoscopy in a general surgery residency. Surg Endosc. 2012; 26 (12): 3486-3494. doi: 10.1007/s00464-012-2391-4.
Demirseren ME, Ceran C, Duman Y, Sarici M. Excised abdominoplasty material as a systematic plastic surgical training model. Plast Surg Int. 2012;2012:834212. doi: 10.1155/2012/834212.
Zucca-Matthes G, Lebovic G, Lyra M. Mastotrainer new version: realistic simulator for training in breast surgery. Breast. 2017; 31: 82-84. doi: 10.1016/j.breast.2016.08.009.
Denadai R, Toledo AP, Martinhão Souto LR. Basic plastic surgery skills training program on inanimate bench models during medical graduation. Plast Surg Int. 2012; 2012: 1-12. doi: 10.1155/2012/651863.
Al-Bustani S, Halvorson EG. Status of microsurgical simulation training in plastic surgery: a survey of United States Program Directors. Ann Plast Surg. 2016; 76 (6): 713-716. doi: 10.1097/SAP.0000000000000636.
Rosen JM, Long SA, McGrath DM GS. Simulation in plastic surgery training and education: the path forward. Plast Reconstr Surg. 2009; 123 (2): 739-740. doi: 10.1097/PRS.0b013e3181958f27.
Reis MGA dos, Marim RG, Souto LRM. Pinna synthetic mold for otoplasty techniques application. Braz J Otorhinolaryngol. 2018; 84 (2): 159-165. doi: 10.1016/j.bjorl.2017.01.004.