2019, Número 4
<< Anterior Siguiente >>
Acta Ortop Mex 2019; 33 (4)
Citoquinas proinflamatorias en la grasa articular y subcutánea del muslo en pacientes artrósicos
Bravo B, Arguello JM, Rodríguez-De Gortazar A, Forriol F, Vaquero J
Idioma: Español
Referencias bibliográficas: 44
Paginas: 204-210
Archivo PDF: 175.27 Kb.
RESUMEN
Objetivo: Analizar el nivel de citoquinas proinflamatorias en la grasa articular del paquete adiposo en pacientes con gonartrosis, en relación con la grasa subcutánea del muslo.
Material y métodos:Efectuamos un estudio de grasa del paquete adiposo articular de la rodilla afectada de artrosis y de la grasa subcutánea del muslo del mismo lado, a la mayor distancia de la articulación en seis pacientes con gonartrosis grave, con una edad media de 68 años (rango: 55-81 años). De las muestras de grasa se obtuvieron las células mesenquimales progenitoras. Los sobrenadantes de células mesenquimales obtenidas se utilizaron para analizar factores inflamatorios (IL-1b, IL6, IL8, IL9, IL1ra, IL12, IL13, IL15) y angiogénicos (VEGF, PDGF bb), así como citoquinas inmunomoduladoras (IP-10 e INF-γ) y se compararon las medias de dos muestras.
Resultados: El análisis cuantitativo reveló una disminución significativa (p ‹ 0.05) de IL-1b, IL6, IL8, IL9, IL1ra, IL12, IL13 y un aumento de IL15 en la grasa de Hoffa frente al tejido adiposo subcutáneo. Del mismo modo, el análisis de factores angiógenicos como VEGF y PDGF bb, al igual que los factores IP-10 e INF-γ presentaron una disminución significativa en la grasa de Hoffa (p ‹ 0.05) frente al tejido adiposo subcutáneo.
Discusión: Las células mesenquimales del paquete adiposo articular de la rodilla artrósica grave muestran una disminución significativa de citoquinas inflamatorias, aun en el estado crónico, y una disminución significativa de factores angiogénicos y citoquinas inmunomoduladoras (IP10 e INF).
REFERENCIAS (EN ESTE ARTÍCULO)
Loeser RF, Goldring SR, Scanzello CR, Goldring MB. Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum. 2012; 64(6) 1697-707.
Martínez AT, Forriol F. Modificación del líquido sinovial en diferentes afecciones articulares de la rodilla. Rev Esp Cir Ortop Traumatol. 2012; 56(2): 140-8.
Marks PH, Donaldson ML. Inflammatory cytokine profiles associated with chondral damage in the anterior cruciate ligament-deficient knee. Arthroscopy. 2005; 21(11): 1342-7.
Cuellar VG, Cuellar JM, Golish SR, Yeomans DC, Scuderi GJ. Cytokine profiling in acute anterior cruciate ligament injury. Arthroscopy. 2010; 26: 1296-301.
Bigoni M, Sacerdote P, Turati M, Franchi S, Gandolla M, Gaddi D, et al. Acute and late changes in intraarticular cytokine levels following anterior cruciate ligament injury. J Orthop Res. 2013; 31: 315-21.
Yusuf E, Nelissen RG, Ioan-Facsinay A, Stojanovic-Susulic V, DeGroot J, van Osch G, et al. Association between weight or body mass index and hand osteoarthritis: a systematic review. Ann Rheum Dis. 2010; 69(4): 761-5.
Pottie P, Presle N, Terlain B, Netter P, Mainard D, Berenbaum F. Obesity and osteoarthritis: more complex than predicted! Ann Rheum Dis. 2006; 65(11): 1403-5.
Gómez R, Conde J, Scotece M, Gómez-Reino JJ, Lago F, Gualillo O. Whats new in our understanding of the role of adipokines in rheumatic diseases? Nat Rev Rheumatol. 2011; 7(9): 528-36.
Lago F, Dieguez C, Gomez-Reino J, Gualillo O. The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine Growth Factor Rev. 2007; 18(3-4): 313-25.
Scheller EL, Cawthorn WP, Burr AA, Horowitz MC, MacDougald OA. Marrow adipose tissue: trimming the fat. Trends Endocrinol Metab. 2016; 27(6): 392-403.
Kim TY, Schafer AL. Diabetes and bone marrow adiposity. Curr Osteoporos Rep. 2016; 14(6): 337-44.
Fazeli PK, Horowitz MC, MacDougald OA, Scheller EL, Rodeheffer MS, Rosen CJ, et al. Marrow fat and bone--new perspectives. J Clin Endocrinol Metab. 2013; 98(3): 935-45.
Schwartz AV. Marrow fat and bone: review of clinical findings. Front Endocrinol(Lausanne). 2015; 6: 40.
Devlin MJ, Rosen CJ. The bone-fat interface: basic and clinical implications of marrow adiposity. Lancet Diabetes Endocrinol. 2015; 3(2): 141-7.
Paccou J, Hardouin P, Cotten A, Penel G, Cortet B. The role of bone marrow fat in skeletal health: usefulness and perspectives for clinicians. J Clin Endocrinol Metab. 2015; 100(10): 3613-21.
Verma S, Rajaratnam JH, Denton J, Hoyland JA, Byers RJ. Adipocytic proportion of bone marrow is inversely related to bone formation in osteoporosis. J Clin Pathol. 2002; 55: 693-8.
Gimble J, Guilak F. Adipose-derived adult stem cells: isolation, characterization, and differentiation potential. Cytotherapy. 2003; 5(5): 362-9.
Goldring SR, Goldring MB. The role of cytokines in cartilage matrix degeneration in osteoarthritis. Clin Orthop Relat Res. 2004; 427(Suppl): 27-36.
Brinckerhoff CE, Matrisian LM. Matrix metalloproteinases: a tail of a frog that became a prince. Nat Rev Mol Cell Biol. 2002; 3(3): 207-14.
Goldring MB, Birkhead J, Sandell LJ, Kimura T, Krane SM. Interleukin 1 suppresses expression of cartilage-specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J Clin Invest. 1988; 82(6): 2026-37.
Rahmati M, Mobasheri A, Mozafari M. Inflammatory mediators in osteoarthritis: A critical review of the state-of-the-art, current prospects, and future challenges. Bone. 2016; 85: 81-90.
Scanzello CR, Goldring SR. The role of synovitis in osteoarthritis pathogenesis. Bone. 2012; 51(2): 249-57.
Bellucci F, Meini S, Cucchi P, Catalani C, Nizzardo A, Riva A, et al. Synovial fluid levels of bradykinin correlate with biochemical markers for cartilage degradation and inflammation in knee osteoarthritis. Osteoarthritis Cartilage. 2013; 21(11): 1774-80.
Goldring MB, Otero M. Inflammation in osteoarthritis. Curr Opin Rheumatol. 2011; 23(5): 471-8.
Berenbaum F. Osteoarthritis as an inflammatory disease (osteoarthritis is not osteoarthrosis!). Osteoarthritis Cartilage. 2013; 21(1): 16-21.
Nam J, Perera P, Liu J, Rath B, Deschner J, Gassner R. Sequential alterations in catabolic and anabolic gene expression parallel pathological changes during progression of monoiodoacetate-induced arthritis. PLoS One. 2011; 6(9): e24320.
Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H. Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol. 2011; 7(1): 33-42.
Waldstein W, Perino G, Jawetz ST, Gilbert SL, Boettner F. Does intraarticular inflammation predict biomechanical cartilage properties? Clin Orthop Relat Res. 2014; 472: 2177-84.
Swan A, Amer H, Dieppe P. The value of synovial fluid assays in the diagnosis of joint disease: a literature survey. Ann Rheum Dis. 2002; 61(6): 493-8.
Felson DT, Goggins J, Niu J, Zhang Y, Hunter DJ. The effect of body weight on progression of knee osteoarthritis is dependent on alignment. Arthritis Rheum. 2004; 50(12): 3904-9.
Aspden RM. Obesity punches above its weight in osteoarthritis. Nat Rev Rheumatol. 2011; 7(1): 65-8.
Griffin TM, Guilak F. Why is obesity associated with osteoarthritis? Insights from mouse models of obesity. Biorheology. 2008; 45(3-4): 387-98.
Handschin C, Spiegelman BM. The role of exercise and PGC1alpha in inflammation and chronic disease. Nature. 2008; 454(7203): 463-9.
Chang CH, Hsu YM, Chen YC, Lin FH, Sadhasivam S, Loo ST, et al. Anti-inflammatory effects of hydrophilic and lipophilic statins with hyaluronic acid against LPS-induced inflammation in porcine articular chondrocytes. J Orthop Res. 2014; 32(4): 557-65.
Krasnokutsky S, Attur M, Palmer G, Samuels J, Abramson SB. Current concepts in the pathogenesis of osteoarthritis. Osteoarthritis Cartilage. 2008; 16(Suppl): S1-3.
Goekoop RJ, Kloppenburg M, Kroon HM, Frolich M, Huizinga TW, Westendorp RG, et al. Low innate production of interleukin-1beta and interleukin-6 is associated with the absence of osteoarthritis in old age. Osteoarthritis Cartilage. 2010; 18(7): 942-7.
Gallagher J, Tierney P, Murray P, O’Brien M. The infrapatellar fat pad: anatomy and clinical correlations. Knee Surg Sports Traumatol Arthrosc. 2005; 13(4): 268-72.
Toussirot E, Streit G, Wendling D. The contribution of adipose tissue and adipokines to inflammation in joint diseases. Curr Med Chem. 2007; 14(10): 1095-100.
Issa RI, Griffin TM. Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation. Pathobiol Aging Age Relat Dis. 2012; 2(2012): pii: 17470.
Hopper N, Henson F, Brooks R, Ali E, Rushton N, Wardale J. Peripheral blood derived mononuclear cells enhance osteoarthritic human chondrocyte migration. Arthritis Res Ther. 2015; 17: 199.
Maniwa S, Ochi M, Motomura T, Nishikori T, Chen J, Naora H. Effects of hyaluronic acid and basic fibroblast growth factor on motility of chondrocytes and synovial cells in culture. Acta Orthop Scand. 2001; 72(3): 299-303.
Joos H, Wildner A, Hogrefe C, Reichel H, Brenner RE. Interleukin-1 beta and tumor necrosis factor alpha inhibit migration activity of chondrogenic progenitor cells from non-fibrillated osteoarthritic cartilage. Arthritis Res Ther. 2013; 15(5): R119.
Mishima Y, Lotz M. Chemotaxis of human articular chondrocytes and mesenchymal stem cells. J Orthop Res. 2008; 26: 1407-12.
Ohnishi H, Yamaguchi K, Shimada S, Sato M, Funatc H, Katsuki Y, et al. Evidence for «response to injury» hypothesis. Life Sci. 1982; 31(23): 2595-602.