2019, Número S1
<< Anterior Siguiente >>
Acta Med 2019; 17 (S1)
Capacitación espermática: una herramienta para las técnicas de reproducción asistida
Cervantes IE, Durán MLA, Carballo ME, Kably AA
Idioma: Español
Referencias bibliográficas: 43
Paginas: 34-41
Archivo PDF: 262.48 Kb.
RESUMEN
Para lograr una fecundación exitosa por medio de las técnicas de reproducción asistida (TRA), es necesario realizar una capacitación y selección espermática in vitro con la finalidad de conseguir una muestra libre de contaminantes y factores decapacitantes, así como obtener la mayor cantidad de espermatozoides viables, móviles y capaces de llegar a fecundar el ovocito. Es indispensable realizar la mejor técnica de preparación espermática dependiendo del tipo de muestra y de la TRA que se llevará a cabo, ya que de esto dependerá en gran medida el éxito del tratamiento. En este artículo se discute el procedimiento de diversas técnicas (técnica de lavado,
swim-up convencional, gradientes de densidad, microfluidos, MACS y potencial Z), y los casos en los que se recomienda utilizar cada una de ellas.
REFERENCIAS (EN ESTE ARTÍCULO)
Barroso G, Chaya M, Bolaños R, Rosado Y, García LF, Ibarrola E. Valor pronóstico en las tasas de recuperación para la aplicación de técnicas de preparación seminal y su evaluación en la función espermática. Ginecol Obstet Mex. 2005; 73 (5): 221-228.
Carballo-Mondragón E, Durán-Monterrosas L, Cervantes-Ibarra E, Kably-Ambe A. Comparación de la técnica de gradientes vs técnica de microfluidos para separación espermática. Rev Mex Med Reprod. 2019; 10: 3-8.
WHO. WHO Laboratory Manual for the examination and processing of human semen [Internet]. 5th ed., Cambridge, Cambridge University. 2010: 286 p. Disponible en: http://whqlibdoc.who.int/publications/2010/9789241547789_eng.pdf.
Remohí JA, Cobo AC, Prados N, Romero JL, Pellicer A. Manual práctico de Esterilidad y Reproducción Humana. Laboratorio de reproducción asistida. 4ª. ed. Madrid, España: Editorial Médica Panamericana; 2013. pp. 1-458.
López García MJ, Urbano Felices A, Cárdenas Povedano M. Manual de laboratorio para el análisis del semen. Gutiérrez-Romero J, López-Pelayo I (editores). OmniaScience; 2012: p. 129.
Arenas RE, Cambron RA, Ambriz G D, Zúñiga RP, Rodríguez T, Ahiezer. Rosado GA. Bases fisiológicas de la capacitación y de la reacción acrosomal del espermatozoide. Contacto S. 2010; 78: 5-11.
Bradley CK, McArthur SJ, Gee AJ, Weiss KA, Schmidt U, Toogood L. Intervention improves assisted conception intracytoplasmic sperm injection outcomes for patients with high levels of sperm DNA fragmentation: a retrospective analysis. Andrology. 2016; 4 (5): 903-910 [citado el 7 de junio de 2019]. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/27231097.
Zheng WW, Song G, Wang QL, Liu SW, Zhu XL, Deng SM et al. Sperm DNA damage has a negative effect on early embryonic development following in vitro fertilization. Asian J Androl. 2018; 20 (1): 75-79.
Henkel R. Sperm preparation: State-of-the-art: Physiological aspects and application of advanced sperm preparation methods. Asian J Androl. 2012; 14 (2): 260-269.
Olivera M, Ruiz T, Tarazona A, Giraldo C. El espermatozoide, desde la eyaculación hasta la fertilización. Rev Col Cienc Pec. 2006; 19 (4): 426-436.
Darszon A. Canales, iones y cómo el espermatozoide interpreta los mensajes del óvulo. Biotecnología. 2007; 14 (3): 30-42. Disponible en: http://pt7mdv.ceingebi.unam.mx/computo/pdfs/libro_25_aniv/capitulo_03.pdf.
Sánchez I, Mar C, Castilla JA, Marcos M, Martín I, Galán A et al. Técnicas para la preparación de semen en reproducción asistida. Sociedad Española de Bioquímica Clínica y Patología Molecular. Documento C. Fase 3. Versión 4. 2009: 23-26.
Romany L, Garrido N, Motato Y, Aparicio B, Remohí J, Meseguer M. Removal of annexin V - positive sperm cells for intracytoplasmic sperm injection in ovum donation cycles does not improve reproductive outcome: a controlled and randomized trial in unselected males. Fertil Steril. 2014; 102 (6): 1567-1576.
Paasch U, Grunewald S, Glander HJ. Sperm selection in assisted reproductive techniques. Soc Reprod Fertil Suppl. 2007; 65: 515-525.
Henkel RR, Schill WB. Sperm preparation for ART. Reprod Biol Endocrinol. 2003; 1: 108.
Beydola T, Sharma RK, Agarwal A. Sperm preparation and selection techniques. In: Rizk B, Aziz N, Agarwal A, editors. Male infertility practice. New Delhi: Jaypee Brothers Medical Publishers; 2013: pp. 244-251.
Neri VP, Gaona AR, Serviere ZC. Inseminación intrauterina con selección de sexo: una técnica modificada de capacitación espermática sencilla, económica y efectiva. Rev Mex Med Repro. 2011; 4 (2): 77-81.
Volpes A, Sammartano F, Rizzari S, Gullo S, Marino A, Allegra A. The pellet swim-up is the best technique for sperm preparation during in vitro fertilization procedures. J Assist Reprod Genet. 2016; 33 (6): 765-770. Disponible en: http://dx.doi.org/10.1007/s10815-016-0696-2.
Malvezzi H, Sharma R, Agarwal A, Abuzenadah AM, Abu-elmagd M. Sperm quality after density gradient centrifugation with three commercially available media: a controlled trial. Reprod Biol Endocrinol. 2014; 12: 121.
Oshio S, Kaneko S, Iizuka R, Mohri H. Effects of gradient centrifugation on human sperm. Arch Androl. 1987; 19 (1): 85-93 [citado el 7 de junio de 2019]. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/3426342.
Kuji N, Yoshii T, Hamatani T, Hanabusa H, Yoshimura Y, Kato S. Buoyant density and sedimentation dynamics of HIV-1 in two density-gradient media for semen processing. Fertil Steril. 2008; 90 (5): 1983-1987. [citado el 22 de junio de 2019]. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/18166180.
Carballo ME, Campos CJ, Ortiz-Reyes H, Kably AA. Comparación de tres métodos de capacitación espermática para ICSI en pacientes con morfología anormal. Rev Mex Med Reprod. 2011; 4 (2): 68-71.
Samuel R, Feng H, Jafek A, Despain D, Jenkins T, Gale B. Microfluidic- based sperm sorting and analysis for treatment of male infertility. Transl Androl Urol. 2018; 7 (Suppl 3): S336-S347.
Smith GD, Takayama S. Gamete and embryo isolation and culture with microfluidics. Theriogenology. 2007; 68 (Suppl. 1): S190-195.
Shirota K, Yotsumoto F, Itoh H, Obama H, Hidaka N, Nakajima K et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil Steril. 2016; 105 (2): 315-321.
Suh RS, Phadke N, Ohl DA, Takayama S, Smith GD. Rethinking gamete/embryo isolation and culture with microfluidics. Hum Reprod Update. 2003; 9 (5): 451-461.
Schuster TG, Cho B, Keller LM, Takayama S, Smith GD. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod Biomed Online. 2003; 7 (1): 75-81 [citado el 7 de junio de 2019]. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/12930579.
Sedó CA, Bilinski M, Lorenzi D, Uriondo H, Noblía F, Longobucco V et al. Effect of sperm DNA fragmentation on embryo development: clinical and biological aspects. JBRA Assist Reprod. 2017; 21 (4): 343-350.
Troya J, Zorrilla I. Annexin V-MACS in infertile couples as method for separation of sperm without DNA fragmentation. JBRA Assist Reprod. 2015; 19 (2): 66-69.
Grunewald S, Reinhardt M, Blumenauer V, Said TM, Agarwal A, Abu Hmeidan F et al. Increased sperm chromatin decondensation in selected nonapoptotic spermatozoa of patients with male infertility. Fertil Steril. 2009; 92 (2): 572-5577. Disponible en: http://dx.doi.org/10.1016/j.fertnstert.2008.07.1705.
Said TM, Agarwal A, Zborowski M, Grunewald S, Glander H, Paasch U. Utility of magnetic cell separation as a molecular sperm preparation technique. J Androl. 2008; 29 (2): 134-142.
Sheikhi A, Jalali M, Gholamian M, Jafarzadeh A, Jannati S, Mousavifar N. Elimination of apoptotic spermatozoa by magnetic-activated cell sorting improves the fertilization rate of couples treated with ICSI procedure. Andrology. 2013; 1 (6): 845-849.
Merino-Ruiz M, Morales-Martínez FA, Navar-Vizcarra E, Valdés-Martínez OH, Sordia-Hernández LH, Saldívar-Rodríguez D et al. The elimination of apoptotic sperm in IVF procedures and its effect on pregnancy rate. JBRA Assist Reprod. 2019; 23 (2): 112-116.
Ziarati N, Tavalaee M, Bahadorani M, Nasr Esfahani MH. Clinical outcomes of magnetic activated sperm sorting in infertile men candidate for ICSI. Hum Fertil (Camb). 2018; 22 (2): 118-125. Disponible en: https://doi.org/10.1080/14647273.2018.1424354.
Duarte C, Núñez V, Wong Y, Vivar C, Benites E, Rodriguez U et al. Impact of the Z potential technique on reducing the sperm DNA fragmentation index, fertilization rate and embryo development. JBRA Assist Reprod. 2017; 21 (4): 351-355.
Razavi SH, Nasr-Esfahani MH, Deemeh MR, Shayesteh M, Tavalaee M. Evaluation of zeta and HA-binding methods for selection of spermatozoa with normal morphology, protamine content and DNA integrity. Andrologia. 2010; 42 (1): 13-19.
Chan PJ, Jacobson JD, Corselli JU, Patton WC. A simple zeta method for sperm selection based on membrane charge. Fertil Steril. 2006; 85 (2): 481-486.
Zarei-Kheirabadi M, Shayegan Nia E, Tavalaee M, Deemeh MR, Arabi M, Forouzanfar M et al. Evaluation of ubiquitin and annexin V in sperm population selected based on density gradient centrifugation and zeta potential (DGC-Zeta). J Assist Reprod Genet. 2012; 29 (4): 365-371 [citado el 17 de junio de 2019]. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/22183502.
Ishijima SA, Okuno M, Mohri H. Zeta potential of human X- and Y-bearing sperm. Int J Androl. 1991; 14 (5): 340-347.
Cerezo PG, Castilla AJ, Rodríguez HH. Manual para el análisis básico de semen: una guía práctica. México D.F.: Editorial Pardo. 2014.
Visconti PE, Kopf GS. Regulation of protein phosphorylation during sperm capacitation. Biol Reprod. 1998; 59 (1): 1-6.
Li SH, Hwu YM, Lu CH, Lin MH, Yeh LY, Lee RK. Serine protease inhibitor SERPINE2 reversibly modulates murine sperm capacitation. Int J Mol Sci. 2018; 19 (15): pii: E1520.
Matsuura K, Uozumi T, Furuichi T, Sugimoto I, Kodama M, Funahashi H. A microfluidic device to reduce treatment time of intracytoplasmic sperm injection. Fertil Steril. 2013; 99 (2): 400-407 [citado el 7 de junio de 2019]. Disponible en: http://www.ncbi.nlm.nih.gov/pubmed/23122951.