2019, Número 1
<< Anterior Siguiente >>
Rev Cubana Estomatol 2019; 56 (1)
Método químico simplificado de desmineralización de esmalte dental humano
Bernett ZGP, Camargo HHG, López PLA, Torres RC, Delgado ME
Idioma: Ingles.
Referencias bibliográficas: 30
Paginas: 13-26
Archivo PDF: 660.58 Kb.
RESUMEN
Introducción: Se requieren métodos experimentales abreviados para simular las lesiones de desmineralización temprana de forma controlada y reproducible.
Objetivo: Realizar una evaluación in vitro de un método simple de desmineralización incipiente del esmalte.
Métodos: Estudio experimental aleatorizado con doble diseño factorial de réplicas. Se seleccionaron 12 terceros molares de sujetos humanos saludables para su desmineralización en solución de ácido láctico racémico. Las muestras se distribuyeron aleatoriamente: Grupo 1 (G1) (n= 6) ácido láctico a pH 2,4 y Grupo 2 (G2) (n= 6) ácido láctico a pH 5,4. A continuación, cada grupo se subdividió (n = 2) para evaluar el efecto de las soluciones a tres tiempos de exposición (7, 15 y 30 días) a 37 °C. La evaluación se llevó a cabo con estereomicroscopios, equipo de radiografía digital con un software de análisis digital de imágenes y microscopía de polarización. Se formuló una integración de los índices de respuesta y se realizó un ANOVA.
Resultados: Los hallazgos visuales, radiográficos e histológicos mostraron que en el G1 en los tiempos 1 a 3, la desmineralización se caracterizó por una gran pérdida de la integridad del esmalte (80% a 100%). Visualmente, el G2 a los 7 días mostró opacidad y pérdida de brillo (16%) con preservación de la estructura superficial del esmalte.
Conclusiones: Se demuestra que el empleo de ácido láctico durante 7 días a pH 5,4 produce una lesión clínica, radiográfica e histológica similar a una lesión temprana del esmalte.
REFERENCIAS (EN ESTE ARTÍCULO)
Castellanos JE, Marín LM, Úsuga MV, Castiblanco GA, Martignon S. Enamel Remineralization under the Current Caries Understanding. Univ Odontol. 2013;32:49-59. Access: 2014/04/18. Available from: http://www.javeriana.edu.co/ universitasodontologica 2016/02/20
Reyes-Gasga J. Observación delesmalte dental humano con microscopia electrónica. Rev Tamé. 2013;1(3):90-6. Access: 2014/04/05. Available from: http://www.uan.edu.mx/d/a/publicaciones/revista_tame/numero_3/Tam133-06.pdf
Siddiqui S, Anderson P, Al-Jawad M. Recovery of Crystallographic Texture in Remineralized Dental Enamel. P One. 2014;9(10):e108879. Access: 2015/04/15. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25360532
Tuloglu N, Bayrak S, Tunc ES, Ozer F . Effect of fluoride varnish with added casein phosphopeptide-amorphous calcium phosphate on the acid resistance of the primary enamel. BMC Oral Health. 2016;16(1):103. Access: 2016/02/15. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5036284/
Cedillo J. Uso de los derivados de la caseína en los procedimientos de remineralización. Rev ADM. 2012;69:191-9. Access: 2014/04/18. Available from: http://www.medigraphic.com/pdfs/adm/od-2012/od124i.pdf
Vieira AR, Gibson CW, Deeley K, Xue H, Li Y. Weaker Dental Enamel Explains Dental Decay. P ONE. 2015;10(4):e0124236. Access: 2016/02/20. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4401694/
Arnold WH, Heidt BA, Kuntz S, Naumova EA. Effects of Fluoridated Milk on Root Dentin Remineralization. P One. 2014;9(8):e104327. Access: 2015/03/20. Available from: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0104327
Cheng X, Xu P, Zhou X, Deng M, Cheng L, Li M, et al. Arginine promotes fluoride uptake into artificial carious lesions in vitro. Australian Dental Journal. 2015;60: 104-11. Access: 2016/02/20. Available from: http://onlinelibrary.wiley.com/doi/10.1111/adj.12278/full
De Campos PH, Sanabe ME, Rodrigues JA, Duarte DA, Santos MTBR, Guaré RO, et al. Different bacterial models for in vitro induction of non-cavitated enamel caries-like lesions: Microhardness and polarized light microscopy analyses. Microsc. Res. Tech. 2015;78:444-51. Access: 2016/02/20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25783414
Arthur RA, Kohara EK, Waeiss RA, Eckert GJ, Zero D, Ando M. Enamel Carious Lesion Development in Response to Sucrose and Fluoride Concentrations and to Time of Biofilm Formation: An Artificial-Mouth Study. J Oral Dis. 2014;1-8. Access: 2015/03/20. Available from: https://www.hindawi.com/archive/2014/348032/
Sabel N, Robertson A, Nietzsche S. Demineralization of Enamel in Primary Second Molars Related to Properties of the Enamel. The Scientific World Journal. 2012];8. Access: 2014/04/01. Available from: https://www.hindawi.com/journals/tswj/2012/587254/
González LC, Úsuga MV, Torres C, Delgado E. Biobanco de dientes humanos para investigación en odontología. Acta Odontológica Colombiana. 2014;4:9-21. Access: 2015/03/20. Available from: http://revistas.unal.edu.co/index.php/actaodontocol/article/view/44602
Young FW. Quantitative analysis of qualitative data. Psychometrika. 2014;46:357-88.
Abou Neel EA, Aljabo A, Strange A. Demineralization-remineralization dynamics in teeth and bone. International Journal of Nanomedicine. 2016;11:4743-63. Access: 2017/02/20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27695330
Tenuta LMA, Fernández CE, Brandão ACS, Cury JA. Titratable acidity of beverages influences salivary pH recovery. Braz Oral Res. 2015;29:1-6. Access: 2016/02/20. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S180683242015000100234
Carvalho JC, Dige I, Machiulskiene V, Qvist V, Bakhshandeh A, Fatturi-Parolo C, et al. Occlusal Caries: Biological Approach for Its Diagnosis and Management. Caries Res. 2016;50:527-42. Access: 201/02/20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27658123
Heshmat H, Ganjkar MH, Miri Y, Fard MJK. The effect of two remineralizing agents and natural saliva on bleached enamel hardness. Dental Research Journal. 2016;13(1):52-7. Access: 2016/02/20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/26962316
Hosoya Y, Tadokoro K, Inoue T, Miyazaki M, Tay FR. Effect of SI-R20401 to remineralize artificial incipient enamel lesions in primary teeth. J Oral Sci. 2013;55:301-10. Access: 2015/03/20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24351918
Kang H, Darling C, Fried D. Nondestructive monitoring of the repair of enamel artificial lesions by an acidic remineralization model using polarization-sensitive optical coherence tomography. Dent Mater. 2012;28:488-94. Access: 2014/04/18. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3319335/
Nakashima S, Yoshie M, Sano H, Bahar A. Effect of a test dentifrice containing nano-sized calcium carbonate on remineralization of enamel lesions in vitro. J Oral Sci. 2009;51:77. Access: 2014/04/18. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19325202
Ionta FQ, Mendonça FL, de Oliveira GC, de Alencar CR, Honório HM, Magalhães AC, et al. In vitro assessment of artificial saliva formulations on initial enamel erosion remineralization. J Dent. 2014;4:175-9. Access: 2015/03/20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24269764
Nakata K, Nikaido T, Ikeda M, Foxton RM, Tagami J. Relationship between fluorescence loss of QLF and depth of demineralization in an enamel erosion model. Dent Mater J. 2009;28:523-9. Access: 2014/04/18. Available from: https://www.ncbi.nlm.nih.gov/pubmed/19822981
Nuvvula S, Bhumireddy JR, Kamatham R, Mallineni SK. Diagnostic accuracy of direct digital radiography and conventional radiography for proximal caries detection in primary teeth: A systematic review. J Indian Soc Pedod Prev Dent. 2016. Access: 2017/02/20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27681391
Azevedo CS, Trung LCE, Simionato MRL, Freitas AZ, Matos AB. Evaluation of caries affected dentin with optical coherence tomography. Braz Oral Res. 2011; 25:407-13. Access: 2016/02/20. Available from: http://www.scielo.br/scielo.php?script=sci_arttext&pid=S180683242011000500006
Lino M, Murayama R, Shimamura Y, Kurokawa H, Furuichi T, Suzuki T, et al. Optical coherence tomography examination of the effect of S-PRG filler extraction solution on the demineralization of bovine enamel. Dent Mater J. 2014;33:48-53. Access: 2016/02/20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/24492111
Alhawij H, Lippert F, Martinez-Mier E. Relative fluoride response of caries lesions created in fluorotic and sound teeth studied under remineralizing conditions. J Appl Oral Sci. 2007;15:392-8. Access: 2014/04/18. Available from: https://www.ncbi.nlm.nih.gov/pubmed/25446241
Wang Z, Zheng W, Chin-Ying SH, Huang Z. Optical diagnosis and characterization of dental caries with polarization-resolved hyperspectral stimulated Raman scattering microscopy. Biomed Opt Express. 2016;7(4):1284-93. Access: 2016/05/15. Available from: https://www.ncbi.nlm.nih.gov/pubmed/27446654
Miresmaeili A, Khosroshahi ME, Motahary P, Rezaei-Soufi L, Mahjub H, Dadashi M, et al. Effect of Argon Laser on Enamel Demineralization around Orthodontic Brackets: An in vitro Study. J Dent. 2014;11:411-7. Access: 2015/03/20. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4283742/
Pulido MT, Wefel JS, Hernandez MM, Denehy GE, Guzman-Armstrong S, Chalmers JM, et al. The Inhibitory Effect of MI Paste, Fluoride and a combination of Both on the Progression of Artificial Caries-like Lesions in Enamel. Operative Dentistry 2008;33:550-5. Access: 2015/03/20. Available from: https://www.ncbi.nlm.nih.gov/pubmed/18833861
Yassaei S, Shahraki N, Aghili H, Davari A. Combined Effects of Er: YAG Laser And Casein Phosphopeptide-Amorphous Calcium Phosphate On The Inhibition Of Enamel Demineralization: An in vitro study. Dent Res J (Isfahan). 2014;11:193-8. Access: 2015/03/20. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4052644/