2006, Número 2
<< Anterior Siguiente >>
Rev Endocrinol Nutr 2006; 14 (2)
Vinculando la respuesta inflamatoria, la obesidad y la diabetes con la sobrecarga (estrés) del retículo endoplásmico a través de las acciones de la selenoproteína S
Bastarrachea RA, Curran JE, Eugenia BV, Kent JJ, López-Alvarenga JC, Téllez-Mendoza J, Blangero J, Comuzzie AG
Idioma: Español
Referencias bibliográficas: 53
Paginas: 89-101
Archivo PDF: 188.39 Kb.
RESUMEN
El componente inflamatorio de la obesidad y la diabetes (DMT2) se ha establecido firmemente debido al descubrimiento de los vínculos causales entre mediadores inflamatorios como el factor de necrosis tumoral alfa (TNF-α) y la señalización del receptor de insulina, así como por la elucidación de mecanismos moleculares subyacentes mediados transcripcional y postranscripcionalmente por la cinasa c-Jun NH2-terminal (JNK) y el inhibidor de la cinasa del factor nuclear-kappa β modificado por IKK, cuyas funciones y expresión inhiben las acciones de la insulina. Ha sido demostrado recientemente que el retículo endoplásmico (ER) es el sitio clave donde las señales metabólicas son procesadas, integradas y transmitidas en forma de señales de sobrecarga o estrés, que dan lugar a la activación de JNK, IKK y, posiblemente, otros mecanismos inflamatorios. La eliminación de las proteínas ensambladas erróneamente (mal ensambladas) en el ER por retrotranslocación es una adaptación fisiológica muy importante para poder corregir la sobrecarga o congestionamiento (estrés) del retículo endoplásmico. Una nueva proteína llamada selenoproteína S de mamíferos ha sido recientemente identificada. Sus funciones putativas sobre la respuesta al estrés (sobrecarga) del retículo endoplásmico se encuentran íntimamente vinculadas a la respuesta inmune y a las vías de señalización inflamatorias. Dicha proteína es codificada por SEPS1 (también conocido como VIMP), que es un gen involucrado en la respuesta a la sobrecarga (estrés) del retículo endoplásmico, con participación también en el control inflamatorio. En este artículo presentaremos los vínculos entre la sobrecarga (estrés), la inflamación, las selenoproteínas y la enfermedad metabólica, particularmente la diabetes mellitus tipo 2 y discutiremos el impacto de la variación genética en la selenoproteína S y su influencia en la regulación de la respuesta inflamatoria.
REFERENCIAS (EN ESTE ARTÍCULO)
Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest 2005; 115: 1111-1119.
Tataranni PA, Ortega E. A burning question: does an adipokine- induced activation of the immune system mediate the effect of overnutrition on type 2 diabetes? Diabetes 2005; 54: 917-927.
Saghizadeh M, Ong JM, Garvey WT, Henry RR, Kern PA. The expression of TNF alpha by human muscle: relation ship to insulin resistance. J Clin Invest 1996; 97: 1111-1116.
Maachi M, Pieroni L, Bruckert E, Jardel C, Fellahi S, Hainque B, Capeau J, Bastard JP. Systemic low-grade inflammation is related to both circulating and adipose tissue TNF alpha, leptin and IL-6 levels in obese women. Int J Obes Relat Metab Disord 2004; 28(8): 993-997.
Dandona PA, Aljada A, Bandyopadhyay A. Inflammation: the link between insulin resistance, obesity and diabetes. Trends Immunol 2004; 25: 4-7.
Pradhan AD, Manson JE, Rifai N, Buring JE, Ridker PM. Creactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001; 286: 327-334.
Sattar N, McCarey DW, Capell H, McInnes IB. Explaining how “high-grade” systemic inflammation accelerates vascular risk in rheumatoid arthritis. Circulation 2003; 108: 2957-2963.
Bahtiyar G, Shin JJ, Aytaman A, Sowers JR, McFarlane SI. Association of diabetes and hepatitis C infection: epidemiologic evidence and pathophysiologic insights. Curr Diabetes Rep 2004; 4: 194-198.
Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796-1808.
Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesityrelated insulin resistance. J Clin Invest 2003; 112: 1821-1830.
Cousin B, Munoz O, Andre M, Fontanilles AM, Dani C, Cousin JL, Laharrague P, Casteilla L, Penicaud L. A role for preadipocytes as macrophage-like cells. FASEB J 1999; 13:305-312.
Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414: 799-806.
Hotamisligil GS, Budavari A, Murray D, Spiegelman BM. Reduced tyrosine kinase activity of the insulin receptor in obesity-diabetes. Central role of tumor necrosis factor-á. J Clin Invest 1994; 94: 1543-1549.
Paz K, Hemi R, LeRoith D, Karasik A, Elhanany E, Kanety H, Zick Y. A molecular basis for insulin resistance: elevated serine/threonine phosphorylation of IRS-1 and IRS-2 inhibits their binding to the juxtamembrane region of the insulin receptor and impairs their ability to undergo insulin-induced tyrosine phosphorylation. J Biol Chem 1997; 272: 29911-29918.
Hirosumi J, Tuncman G, Chang L, Gorgun CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature 2002; 420: 333-336.
Itani SI, Ruderman NB, Schmieder F, Boden G. Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaBalpha. Diabetes 2002; 51(7): 2005-2011.
Perseghin G, Petersen K, Shulman GI. Cellular mechanism of insulin resistance: potential links with inflammation. Int J Obes Relat Metab Disord 2003; 27(Suppl 3): S6-S11.
Shoelson SE, Lee J, Yuan M. Inflammation and the IKK beta/Ikappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. Int J Obes Relat Metab Disord 2003; 27(Suppl. 3): S49-S52.
Yin MJ, Yamamoto Y, Gaynor RB. The anti-inflammatory agents aspirin and salicylate inhibit the activity of I(kappa)B kinase-beta. Nature 1998; 396: 77-80.
Gao Z, Zuberi A, Quon MJ, Dong Z, Ye J. Aspirin inhibits serine phosphorylation of insulin receptor substrate 1 in tumor necrosis factor-treated cells through targeting multiple serine kinases. J Biol Chem 2003; 278: 24944-24950.
Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J, Shoelson SE. Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 2005; 11: 183-190.
Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J, Karmn M. IKKbeta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11: 191-198.
Kaufman RJ, Scheuner D, Schroder M, Shen X, Lee K, Liu CY, Arnold SM. The unfolded protein response in nutrient sensing and differentiation. Nat Rev Mol Cell Biol 2002; 3: 411-421.
Harding HP, Calfon M, Urano F, Novoa I, Ron D. Transcriptional and translational control in the Mammalian unfolded protein response. Annu Rev Cell Dev Biol 2002; 18: 575-599.
Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, Gorgun C, Glimcher LH, Hotamisligil GS. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 2004; 306: 457-461.
Harding HP, Ron D. Endoplasmic reticulum stress and the development of diabetes: a review. Diabetes 2002; 51(Suppl. 3): S455-S461.
Shi Y, Taylor SI, Tan SL, Sonenberg N. When translation meets metabolism: multiple links to diabetes. Endocr Rev 2003; 24: 91-101.
Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka TA, Ozawa K, Ogawa S, Hori M, Yamasaki Y, Matsuhisa M. Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem 2005; 280: 847-851.
Walder KR, Fahey RP, Morton GJ, Zimmet PZ, Collier GR. Characterization of obesity phenotypes in Psammomys obesus (Israeli sand rats). Int J Exp Diabetes Res 2000b; 1: 177-184.
Gao Y, Walder K, Sunderland T, Kantham L, Feng HC, Quick M, Bishara N, de Silva A, Augert G, Tenne-Brown J, Collier GR. Elevation in tanis expression alters glucose metabolism and insulin sensitivity in H4IIE cells. Diabetes 2003; 52: 929-934.
Lilley BN, Ploegh HL. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 2004; 24; 429(6994): 834-840.
Kryukov GV et al. Characterization of mammalian selenoproteomes. Science 2003; 300: 1439-1443.
Karlsson HK, Tsuchida H, Lake S, Koistinen HA, Krook A. Relationship between serum amyloid A level and Tanis/SelS mRNA expression in skeletal muscle and adipose tissue from healthy and type 2 diabetic subjects. Diabetes 2004; 53: 1424-1428.
Aridor M, Balch WE. Integration of endoplasmic reticulum signaling in health and disease. Nature Med 1999; 5: 745-751.
Meyer HH, Shorter JG, Seemann J, Pappin D, Warren G. A complex of mammalian Ufd1 and Np14 links the AAA-ATPase, p97, to ubiquitin and nuclear transport pathways. EMBO J 2000; 19: 2181-2192.
Ye Y, Meyer HH, Rapoport TA. Function of the p97-Ufd1-Np14 complex in retrotranslocation from the ER to the cytosol: dual recognition of nonubiquitinated polypeptide segments and polyubiquitin chains. J Cell Biol 2003; 162: 71-84.
Langer T. AAA proteases: cellular machines for degrading membrane proteins. Trends Biochem Sci 2000; 25: 247-251.
Knop M, Finger A, Braun T, Hellmuth K, Wolf DH. Der1, a novel protein specifically required for endoplasmic reticulum degradation in yeast. EMBO J 1996; 15: 753-763.
Hitt R, Der Wolf DH. 1p, a protein required for degradation of malfolded soluble proteins of the endoplasmic reticulum: topology and Der1-like proteins. FEMS Yeast Res 2004; 4: 721-729.
Ye Y, Shibata Y, Yun C, Ron D, Rapoport TA. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 2004; 429: 841-847.
Pahl HL, Baeuerle PA. The ER-overload response: activation of NF-kappa B. Trends Biochem Sci 1997; 22: 63-67.
Field LL, Tobias R, Magnus T. A locus on chromosome 15q26 (IDDM3) produces susceptibility to insulin-dependent diabetes mellitus. Nat Genet 1994; 8: 189-194.
Blacker D et al. Results of a high-resolution genome screen of 437 Alzheimer’s disease families. Hum Mol Genet 2003; 12: 23-32.
Curran JE, Jowett JB, Elliott KS, Gao Y, Gluschenko K, Wang J et al. Genetic variation in selenoprotein S influences inflammatory response. Nat Genet 2005; 37: 1234-1241.
Caspersen C, Pedersen PS, Treiman M. The sarco/endoplasmic reticulum calcium-ATPase 2b is an endoplasmic reticulum stress-inducible protein. J Biol Chem 2000; 275: 22363-22372.
Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 1998; 62: 1198-1211.
Blangero J et al. Quantitative trait nucleotide analysis using Bayesian model selection. Hum Biol (in the press).
Phillips PC. From complex traits to complex alleles. Trends Genet 1999; 15: 6-8.
Long AD, Lyman RF, Langley CH, Mackay TE. Two sites in the Delta gene region contribute to naturally occurring variation in bristle numer Drosophila melanogaster. Genetics 1998; 149: 999-1017.
Gao Y, Hannan NR, Wanyonyi S, Konstantopolous N, Pagnon J, Feng HC, Jowett JB, Kim KH, Walder K, Collier GR. Activation of the selenoprotein SEPS1 gene expression by pro-inflammatory cytokines in HepG2 cells. Cytokine 2006; 33(5): 246-251.
Feng B, Yao PM, Li Y, Devlin CM, Zhang D, Harding HP, Sweeney M, Rong JX, Kuriakose G, Fisher EA, Marks AR, Ron D, Tabas I. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol 2003; 5: 781-792.
Sanchez-Castillo CP, Velasquez-Monroy O, Lara-Esqueda A, Berber A, Sepulveda J, Tapia-Conyer R, James WP. Diabetes and hypertension increases in a society with abdominal obesity: results of the Mexican National Health Survey 2000. Public Health Nutr 2005; 8(1): 53-60.
Sanchez-Castillo CP, Velasquez-Monroy O, Berber A, Lara-Esqueda A, Tapia-Conyer R, James WP; Encuesta Nacional de Salud (ENSA) 2000 Working Group. Anthropometric cut-off points for predicting diabetes type 2 and hypertension in the Mexican National Health Survey 2000. Obes Res 2003; 11: 442-451.