2019, Número 3
<< Anterior Siguiente >>
Rev Med MD 2019; 10.11 (3)
Identificación de posibles riesgos toxicológicos y sus regulaciones sanitarias del uso de nanomateriales en productos de consumo humano en México
López-de la Mora DA
Idioma: Español
Referencias bibliográficas: 90
Paginas: 221-228
Archivo PDF: 586.26 Kb.
RESUMEN
Identificar los posibles riesgos toxicológicos de las diversas nanopartículas utilizadas en productos de
consumo humano, así como también revisar las regulaciones existentes en México y el mundo del uso
de dichas nanopartículas en el mercado. Presentamos esta revisión bibliográfica de las diversas
regulaciones nacionales e internacionales que refieren el uso de las nanopartículas así como también la
revisión de bibliografía científica que señala los pros y contras del uso de las nanoestructuras. Existe
evidencia científica de la posible toxicidad del constante uso de las nanopartículas. Sin embargo, la
toxicidad esta relacionada al material y concentración. No existe una regulación que hable de forma
clara y especifica sobre el uso de la nanotecnología en México. Es importante tomar en cuenta la
implicación bioética, ambiental y de posibles reacciones adversas a la salud del uso y manejo de la
nanotecnología que se desarrolla para su correcta comercialización.
REFERENCIAS (EN ESTE ARTÍCULO)
1.Vicky V. Mody, Rodney Siwale, Ajay Singh, Hardik R. Mody. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282–289.
2.Maureen R. Gwinn, Val Vallyathan. Nanoparticles: Health Effects—Pros and Cons. Environ Health Perspect. 2006;114(12):1818–1825.
3.Tian Xia, Ning Li, Andre E. Nel. Potential Health Impact of Nanoparticles. Annual Review of Public Health. 2009; 30:137-150.
4.Vance, M. E., Kuiken, T., Vejerano, E. P., McGinnis, S. P., Hochella, M. F., Jr., Rejeski, D. and Hull, M. S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology. 2015; 6: 1769-1780.
5.Kumar A, Vemula PK, Ajayan PM, John G. Silvernanoparticle- embedded antimicrobial paints based on vegetable oil. Nat Mater. 2008;7(3):236-41.
6.Indranee Das and Goutam De. Zirconia based superhydrophobic coatings on cotton fabrics exhibiting excellent durability for versatile use. Sci Rep. 2015;5:18503.
7.Edina C. Wang and Andrew Z. Wang. Nanoparticles and their applications in cell and molecular biology. Integr Biol (Camb). 2014;6(1):9–26.
8.Seifulla RD, Timofeev AB, Ordzhonikidze ZG, Rozhkova EA, Kulikova EV, Druzhinin AE, Kuznetsov IuM, Kim EK. Nanotechnology applications in pharmacology. Eksp Klin Farmakol. 2008;71(1):61-9.
9.Pedro J. Rivero, Aitor Urrutia, Javier Goicoechea, and Francisco J. Arregui. Nanomaterials for Functional Textiles and Fibers. Nanoscale Res Lett. 2015;10:501.
Bumbudsanpharoke N, Choi J, Ko S. Applications of Nanomaterials in Food Packaging. J Nanosci Nanotechnol. 2015;15(9):6357-72.
11.Harjinder Singh. Nanotechnology Applications in Functional Foods; Opportunities and Challenges. Prev Nutr Food Sci. 2016;21(1):1–8.
12.Haji Bahadar, Faheem Maqbool, Kamal Niaz, Mohammad Abdollahi. Toxicity of Nanoparticles and an Overview of Current Experimental Models. Iran Biomed J. 2016;20(1):1–11.
13.Ibrahim Khan, Khalid Saeed, Idrees Khan. Nanoparticles: Properties, applications and toxicities. Arabian Journal of Chemistry 2017. https://doi.org/10.1016/j.arabjc.2017.05.011
14.Rania Bakry, Rainer M Vallant, Muhammad Najam-ul-Haq, Matthias Rainer, Zoltan Szabo, Christian W Huck, and Günther K Bonn. Medicinal applications of fullerenes. Int J Nanomedicine. 2007 Dec;2(4):639–649.
Ali Eatemadi, Hadis Daraee, Hamzeh Karimkhanloo, Mohammad Kouhi, Nosratollah Zarghami, Abolfazl Akbarzadeh, Mozhgan Abasi, Younes Hanifehpour, Sang Woo Joo. Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett. 2014;9(1):393.
16.Liangpeng Ge, Qingtao Li, Meng Wang, Jun Ouyang, Xiaojian Li, Malcolm MQ Xing. Nanosilver particles in medical applications: synthesis, performance, and toxicity. Int J Nanomedicine. 2014;9:2399–2407.
17.Linlin Wang, Chen Hu, Longquan Shao. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227–1249.
18.Thomas SC, Harshita, Mishra PK, Talegaonkar S. Ceramic Nanoparticles: Fabrication Methods and Applications in Drug Delivery. Curr Pharm Des. 2015;21(42):6165-88.
19.Jaya Mary Jacob, Piet N. L. Lens, Raj Mohan Balakrishnan. Microbial synthesis of chalcogenide semiconductor nanoparticles: a review. Microb Biotechnol. 2016; 9(1): 11–21.
20.Sagadevan Suresh. Semiconductor Nanomaterials, Methods and Applications: A Review. Nanoscience and Nanotechnology. 2013; 3(3):62-74.
21.Heneweer C, Gendy SE, Peñate-Medina O. Liposomes and inorganic nanoparticles for drug delivery and cancer imaging. Ther Deliv. 2012 May;3(5):645-56.
22.Malam Y, Loizidou M, Seifalian AM. Liposomes and nanoparticles: nanosized vehicles for drug deliery in cancer. Trends Pharmacol Sci. 2009;30(11):592-9.
23.Lu XY, Wu DC, Li ZJ, Chen GQ. Polymer nanoparticles. Prog Mol Biol Transl Sci. 2011;104:299- 323.
24.Vinit Kumar, Giuseppe Toffoli, Flavio Rizzolio. Fluorescent Carbon Nanoparticles in Medicine for Cancer The rapy. ACSMed Chem Lett. 2013;4(11):1012–1013.
25.Shun-rong Ji, Chen Liu, Bo Zhang, Feng Yang, Jin Xu, Jiang Long, Chen Jin, De-liang Fu, Quan-xing Ni, Xian-jun Yu. Carbon nanotubes in cancer diagnosis and therapy. Biochim Biophys Acta. 2010;1806(1):29-35.
26.Joan Estelrich, María Jesús Sánchez-Martín, Maria Antònia Busquets. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents. Int J Nanomedicine. 2015;10:1727–1741.
Sophie Laurent, Morteza Mahmoudi. Superparamagnetic iron oxide nanoparticles: promises for diagnosis and treatment of cáncer. Int J Mol Epidemiol Genet. 2011;2(4):367–390.
28.Margaret M. Billingsley, Rachel S. Riley, Emily S. Day. Antibody-nanoparticle conjugates to enhance the sensitivity of ELISA-based detection methods. PLoS One. 2017;12(5):e0177592.
29.Cheng FY, Chen CT, Yeh CS. Comparative efficiencies of photothermal destr uction of malignant cells using antibody-coated silica@Au nanoshells, hollow Au/Ag nanospheres and Au nanorods. Nanotechnology. 2009;20(42):425104.
30.Chan JM, Valencia PM, Zhang L, Langer R, Farokhzad OC. Polymeric nanoparticles for drug delivery. Methods Mol Biol. 2010;624:163-75.
31.Rajan Jog Diane, J Burgess. Pharmaceutical Amor phous Nanoparticles. JPharm Sci. 2017;106(1):39-65.
32.Alex Weir, Paul Westerhoff, Lars Fabricius, Natalie von Goetz. Titanium Dioxide Nanoparticles in Food and Personal Care Products. Environ Sci Technol. 2012;46(4):2242–2250.
33.Grande F, Tucci P. Titanium Dioxide Nanoparticles: a Risk for Human Health?. Mini Rev Med Chem. 2016;16(9):762-9.
34.Carmen Losasso, Simone Belluco, Veronica Cibin, Paola Zavagnin, Ivan Mieti, Federica Gallocchio, Michela Zanella, Lisa Bregoli, Giancarlo Biancotto, Antonia Ricci. Antibacterial activity of silver nanoparticles: sensitivity of different Salmonella serovars. Front Microbiol. 2014;5:227.
35.Chetan Sharma, Romika Dhiman, Namita Rokana, Harsh Panwar. Nanotechnology: An Untapped Resource for Food Packaging. Front Microbiol. 2017;8:1735.
36.Ling Zhao, Yumeng Wei, Yu Huang, Bing He, Yang Zhou, Junjiang Fu. Nanoemulsion improves the oral bioavailability of baicalin in rats: in vitro and in vivo evaluation. Int J Nanomedicine. 2013;8:3769–3779.
37.Weng T, Qi J, Lu Y, Wang K, Tian Z, Hu K, Yin Z, Wu W. The role of lipid-based nano delivery systems on oral bioavailability enhancement of fenofibrate, a BCS II dr ug: comparison with fast-release formulations. J Nanobiotechnology. 2014;12:39.
38.Kyong-Hoon Choi, Ki Chang Nam, Sang-Yoon Lee, Guangsup Cho, Jin-Seung Jung, Ho-Joong Kim, Bong Joo Park. Antioxidant Potential and Antibacterial Efficiency of Caffeic Acid- Functionalized ZnO Nanoparticles. Nanomaterials (Basel). 2017 Jun;7(6):148.
39.He X, Hwang HM. Nanotechnology in food science: Functionality, applicability, and safety assessment. J Food Drug Anal. 2016;24(4):671-681.
40.Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect. 2005;113(7):823-39.
41.Griffin S, Masood MI, Nasim MJ, Sarfraz M, Ebokaiwe AP, Schäfer KH, Keck CM, Jacob C. Natural Nanoparticles: A Particular Matter Inspired by Nature. Antioxidants (Basel). 2017 Dec 29;7(1). pii: E3. doi: 10.3390/antiox7010003.
42.Pourmand A, Abdollahi M. Current opinion on nanotoxicology. Daru. 2012 Dec 15;20(1):95.
43.Vishwakarma V, Samal SS, Manoharan N. Safety and risk associated with nanoparticles-a review. Journal of minerals and materials characterization and engineering. 2010;9(5):455.
PanY, BartneckM, Jahnen DechentW. Cytotoxicity of gold nanoparticles. Methods Enzymol. 2012;509:225-42.
45.Rebecca Kessler. Engineered Nanoparticles in Consumer Products: Understanding a New Ingredient. Environ Health Perspect. 2011;119(3):A120–A125.
46.Jain S, Hirst DG, O'Sullivan JM. Gold nanoparticles as novel agents for cancer therapy. Br J Radiol. 2012 Feb; 85(1010):101-13.
47.Muhammad U. Farooq,corresponding author1 Valentyn Novosad,2,3 Elena A. Rozhkova, Hussain Wali, Asghar Ali, Ahmed A. Fateh, Purnima B. Neogi, Ar up Neogi, Zhiming Wang. Gold Nanoparticles-enabled Efficient Dual Delivery of Anticancer Therapeutics to HeLa Cells. Sci Rep. 2018;8:2907.
48.Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, the rapie sand toxicity. Chem Soc Rev. 2009;38(6):1759-82.
49.Aruoja V, Dubourguier HC, Kasemets K, Kahru A. Toxicity of nanoparticles of CuO, ZnO and TiO2 to microalgae Pseudokirchneriella subcapitata. Sci Total Environ. 2009;407(4):1461-8.
50.In-Chul Lee, Je-Won Ko, Sung-Hyeuk Park, Je-Oh Lim, In-Sik Shin, Changjong Moon, Sung-Hwan Kim, Jeong-Doo Heo, Jong- Choon Kim. Comparative toxicity and biodistribution of copper nanoparticles and cupric ions in rats. Int J Nanomedicine. 2016;11:2883–2900.
51.Chen Z, Meng H, Xing G, Chen C, Zhao Y, Jia G, Wang T, Yuan H, Ye C, Zhao F, Chai Z, Zhu C, Fang X, Ma B, Wan L. Acute toxicological effects of copper nanopar ticles in vivo. Toxicol Lett. 2006;163(2):109-20.
52.Meng H, Chen Z, Xing G, Yuan H, Chen C, Zhao F, Zhang C, Zhao Y. Ultrahigh reactivity provokes nanotoxicity: explanation of oral toxicity of nanocopper particles. Toxicol Lett. 2007;175(1-3):102-10.
53.Vazquez-Muñoz R, Borrego B, Juárez-Moreno K, García-García M, Mota Morales JD, Bogdanchikova N, Huerta-Saquero A. Toxicity of silver nanoparticles in biological systems: Does the complexity of biological systems matter?. Toxicol Lett. 2017;276:11-20.
54.Chen X, Schluesener HJ. Nanosilver: a nanoproduct in medical application. Toxicol Lett. 2008; 176(1):1- 12.
55.Sambale F, Wagner S, Stahl F, Khaydarov R, Scheper T, Bahnemann D. Investigations of the Toxic Effect of Silver Nanoparticles on Mammalian Cell Lines. Journal of Nanomaterials 2015; 2015:9. Article ID 136765. https://doi.org/10.1155/2015/136765.
56.Kim KB, Kim YW, Lim SK, Roh TH, Bang DY, Choi SM, Lim DS, Kim YJ, Baek SH, Kim MK, Seo HS, Kim MH, Kim HS, Lee JY, Kacew S, Lee BM. Risk assessment of zinc oxide, a cosmetic ingredient used as a UV filter of sunscreens. J Toxicol Environ Health B Crit Rev. 2017;20(3):155-182.
57.Huang CC, Aronstam RS, Chen DR, Huang YW. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro. 2010; 24(1):45-55.
58.Chao Wang, Jianjun Lu, Le Zhou, Jun Li, Jiaman Xu, Weijian Li, Lili Zhang, Xiang Zhong, Tian Wang. Effects of Long-Term Exposure to Zinc Oxide Nanoparticles on Development, Zinc Metabolism and Biodistribution of Minerals (Zn, Fe, Cu, Mn) in Mice. PLoS One. 2016;11(10):e0164434.
59.Sharma V, Singh P, Pandey AK, Dhawan A. Induction of oxidative stress, DNA damage and apoptosis in mouse liver after sub-acute oral exposure to zinc oxide nanoparticles. Mutat Res. 2012;745(1-2):84-91.
60.Liu R, Zhang X, Pu Y, Yin L, Li Y, Zhang X, Liang G, Li X, Zhang J. Small-sized titanium dioxide nanoparticles mediate immune toxicity in rat pulmonary alveolar macrophages in vivo. J Nanosci Nanotechnol. 2010;10(8):5161-9.
61.Liu H, Ma L, Zhao J, Liu J, Yan J, Ruan J, Hong F. Biochemical toxicity of nano-anatase TiO2 particles in mice. Biol Trace Elem Res. 2009;129(1-3):170-80.
62.Panyam J, Labhasetwar V. Biodeg radable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev. 2003;55(3):329-47.
63.Rashmi H Prabhu, Vandana B Patravale, Medha D Joshi. Polymeric nanoparticles for targeted treatment in oncology: current insights. Int J Nanomedicine. 2015;10:1001-1018.
64.Grabowski N, Hillaireau H, Vergnaud J, Tsapis N, Pallardy M, Kerdine-Römer S, Fattal E. Surface coating mediates the toxicity of polymeric nanoparticles towards human-like macrophages. Int J Pharm. 2015;482(1-2):75-83.
65.Huczko A. Synthesis of aligned carbon nanotubes. Journal of applied physics. 2001;74:617–638.
66.Magrez A, Kasas S, Salicio V, Pasquier N, Seo JW, Celio M, Catsicas S, Schwaller B, Forró L. Cellular toxicity of carbon-based nanomaterials. Nano Lett. 2006; 6(6):1121-5.
67.Ping Xie, Sheng-Tao Yang, Tiantian He, Shengnan Yang, Xiao-Hai Tang. Bioaccumulation and Toxicity of Carbon Nanoparticles Suspension Injection in Intravenously Exposed Mice. Int J Mol Sci. 2017; 18(12): 2562.
68.Natalia Kurantowicz, Ewa Sawosz, Gabriela Halik, Barbara Strojny, Anna Hotowy, Marta Grodzik, Radoslaw Piast, Wanvimol Pasanphan, André Chwalibog. Toxicity studies of six types of carbon nanoparticles in a chicken-embryo model. Int J Nanomedicine. 2017;12:2887–2898.
69.Herzog E, Casey A, Lyng FM, Chambers G, Byrne HJ, Davoren M. A new approach to the toxicity testing of carbon-based nanomaterials--the clonogenic assay. Toxicol Lett. 2007;174(1-3):49-60.
70.Poland CA, Duffin R, Kinloch I, Maynard A, Wallace WA, Seaton A, Stone V, Brown S, Macnee W, Donaldson K. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nat Nanotechnol. 2008; 3(7):423-8.
71.Barbara Strojny, Natalia Kurantowicz, Ewa Sawosz, Marta Grodzik, Sawomir Jaworski, Marta Kutwin, Mateusz Wierzbicki, Anna Hotowy, Ludwika Lipiska, André Chwalibog. Long Term Influence of Carbon Nanoparticles on Health and Liver Status in Rats. PLoS One. 2015;10(12):e0144821.
72.Global Market Insights. Carbon Nanotubes Market Size by Product. [Consultado 2018 Septiembre 06] Consultadoen: https://www.gminsights. com/industry - analysis/carbon-nanotubes-market
73.Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020-37.
74.Caixia Guo, Yinye Xia, Piye Niu, Lizhen Jiang, Junchao Duan, Yang Yu, Xianqing Zhou, Yanbo Li, Zhiwei Sun. Silica nanoparticles induce oxidative stress, inflammation, and endothelial dysfunction in vitro via activation of the MAPK/Nrf2 pathway and nuclear factor-κB signaling. Int J Nanomedicine. 2015;10:1463–1477.
75.EPA United States Environmental Protection Agency. Reviewing New Chemicals under the Toxic Substances Control Act (TSCA). Fact Sheet: Nanoscale Materials. [Consultado 2018 septiembre 6]. Disponible en: https://www.epa.gov/reviewingnew- chemicals-under-toxic-substances-control-acttsca/ fact-sheet-nanoscale-materials
76.EPA United States Environmental Protection Agency. Laws & Regulations. Summary of the Federal Insecticide, Fungicide, and Rodenticide Act. 7 U.S.C. §136 et seq. (1996). [Consultado 2018 septiembre 6]. Disponible en: https://www.epa.gov/laws-regulations/summaryfederal- insecticide-fungicide-and-rodenticide-act
77.FDA U.S. Food & Drug Administration. FDA's Approach to Regulation of Nanotechnology Products. [Consultado 2018 Septiembre 06]. Disponible en:https://www.fda.gov/scienceresearch/specialto pics/nanotechnology/ucm301114.htm
ECHA European Chemicals Agency. Nanomaterials. [Consultado 2018 Septiembre 06]. Disponible en: https://echa.europa.eu/regulations/nanomaterials
79.ANSES Agencia Nacional de Seguridad Sanitaria, Alimentación, Medio Ambiente y Trabajo. Declaración de Nanomateriales. [Consultado 2018 Septiembre 07]. Disponible en: https://www.rnano. fr/?locale=en
80.Federal Ministry of Education and Research. High Tech Strategy. Action Plan Nanotechnology 2015. [Consultado 2018 Septiembre 07]. Disponible en: https://www.lai.fu-berlin.de/homepages/nitsch/publikationen/Germ any_ActionPlanNanotechnology_2015.pdf
Federal Ministr y of Education and Research. The New High Tech Strategy. Action Plan Nanotechnology 2020. [Consultado 2018 Septiembre 07]. Disponible en: https://www.bmbf.de/pub/Action_Plan_Nanotec hnology.pdf
82.Key Laborartory for Biomedical Effects of Nanomaterials and Nanosafety. Chinese Academy of Sciences. [Consultado 2018 Septiembre 07]. Disponible en: http://english.nanosafety.cas.cn/au/intro/
83.Chunli Bai. Ascent of Nanoscience in China. Science 2005; 309(5731): 61-63.
84.Ji Hyun Lee, Jun Yeob Lee, and Il Je Yu. Developing Korean Standard for Nanomaterial Exposure Assessment. Toxicol Res. 2011; 27(2): 53–60.
85.Center for Research and Development Strategy. Japan Science and Technology Agency. Nanotechnology and Materials R&D in Japan (2018): An Overview and Analysis. [Consultado 2018 Septiembre 07]. Disponible en : https://www.jst.go.jp/crds/en/
86.Kessler R. Nanopartículas modificadas en productos de consumo: Cómo entender un nuevo ingrediente. Salud Pública de México 2014;54(1):79-86.
87.Foladori G, Arteaga E, Zagayo E, Appelbaum R, Robles-Belmont E, Villa LL, Parker R, Leos. La Política Pública de Nanotecnología en México. Revista Iberoamericana de Ciencia, Tecnología y Sociedad 2017; 12(34): 51-64.
88.Palacios Hernández, Teresa. Regulación en el uso de la nanotecnología aplicada a la salud en México: situación actual y perspectivas. UDLAP 2017. [Consultado 2018 Diciembre 01]. Disponible en: https://cegresados.udlap.mx/regulacion-en-el-usode- la-nanotecnologia-aplicada-a-la-salud-enmexico- situacion-actual-y-perspectivas/
89.Suazo Debernardi, Blanca. "Nanotecnología en México". GestioPolis. marzo 26, 2018. [Consultado el 13 de Septiembre de 2018]. Disponible en: https://www.gestiopolis.com/nanotecnologia-enmexico/
90.Centro de Investigación en Materiales Avanzados S.C. Diagnóstico y Prospectiva de la Nanotecnología en México. Secretaría de Economía 2008. [Consultado 2018 Noviembre 10]. Disponible en: http://www.nanored.org.mx/documentos/diagnos tico%20y%20prospectiva%20nanotecnologia%20en %20mexico.pdf