2006, Número 4
<< Anterior Siguiente >>
Rev Mex Pediatr 2006; 73 (4)
Prevención del daño cerebral hipóxico-isquémico neonatal: viejos problemas, nuevas esperanzas
Martínez OJ, Vento TM, Jimeno RS, Escrig FR, Sáenz GP, Izquierdo MI
Idioma: Español
Referencias bibliográficas: 39
Paginas: 184-191
Archivo PDF: 77.79 Kb.
RESUMEN
La hipoxia-isquemia neonatal es la causa más frecuente de lesión cerebral en los recién nacidos. El cerebro del neonato, por su alta tasa metabólica y la inmadurez de sus sistemas de defensa, es particularmente vulnerable a numerosos factores implicados en esta lesión: como la acumulación intracelular de cationes, la toxicidad del glutamato, los radicales libres, el óxido nítrico y citoquinas. Es por eso necesario un tratamiento multifactorial para reducir el daño neurológico, aunque únicamente la hipotermia es el único que ha probado ser eficaz; sin embargo, con el empleo de eritropoyetina y cannabinoides se han obtenido resultados prometedores. Mientras tanto, el manejo debe ser dirigido a minimizar el daño cerebral para preservar la homeostasis, evitando la aparición de hiperoxia o hipoxia, hipocapnia, hipoglucemia, hipotensión, hipertermia o convulsiones.
REFERENCIAS (EN ESTE ARTÍCULO)
Niermeyer S, Vento M. Is 100% oxygen necessary for the resuscitation of newborn infants? J Matern Fetal Neonatal Med 2004; 15: 75-84.
World Health Organization, Child Health and Development: Health of the Newborn. Geneva, Switzerland: World Health Organization; 1991.
Shah P, Riphagen S, Beyene J, Periman M. Multiorgan dysfunction in infants with post asphyxial hypoxic-ischemic encephalopathy. Arch Dis Child Fetal Neonatal Ed 2004; 89: F152-155.
Volpe JJ. Perinatal brain injury: from pathogenesis to neuroprotection. Ment Retard Dev Disabil Res Rev 2001; 7: 56-64.
du Plessis AJ, Voipe JJ. Perinatal brain injury in the preterm and term newborn. Curr Opin Neurol 2002; 15: 151-157.
Cowan F, Rutheford M, Groenendaal F, Eken P, Mercuri E, Bydder GM, Meiners LC, Dubowitz LMS, De Vries LS. Origin and timing of brain lesions in term infants with neonatal encephalopathy. Lancet 2003; 361: 736-742.
Ferriero DM. Neonatal brain injury. N Engl J Med 2004; 351: 1985-1996.
Berger R, Garnier Y. Perinatal brain injury. J Perinat Med 2000; 28: 261-285.
Groenendaal F, De Vries L. Selection of babies for intervention after birth asphyxia. Semin Neonatol 2000; 5: 17-32.
Levene MI, Evans DJ, Mason S, Brown J. An international network for evaluating neuroprotective therapy after severe birth asphyxia. Semin Perinatol 1999; 23: 226-233.
Johnston MV. Excitotoxicity in neonatal hypoxia. Ment Retard Dev Disabil Res Rev 2001; 7: 229-234.
Martínez-Orgado J, Ruiz-Gayo M, Cano MV, Alonso MJ, González R, Bonet B, Marín J. Metabolismo neuronal en el daño hipóxico-isquémico. Isquemia y reperfusión cerebral. Revista Latinoamericana de Neonatología (RELAN) 1999; 1 (Supl 1): 235-242.
Saugstad OD. Role of xanthine oxidase and its inhibitor in hypoxia: reoxygenation injury. Pediatrics 1996; 98: 103-107.
Warner DS, Sheng H, Batinic-Haberle I. Oxidants, antioxidants and the ischemic brain. J Exp Biol 2004; 207: 3221-3231.
Fernández-López D, Martínez-Orgado J, Casanova I, Bonet B, Leza JC, Lorenzo, Moro MA, Lizasoain I. Immature brain slices exposed to oxygen-glucose deprivation as an in vitro model of neonatal hypoxic-ischemic encephalopathy. J Neurosci Meth 2005; 145: 205-212.
Allan SM, Rothwell NJ. Cytokines and acute neurodegeneration. Nature Rev Neurosci 2001; 2: 734-740.
Takuma K, Baba A, Matsuda T. Astrocyte apoptosis: implications for neuroprotection. Prog Neurobiol 2004; 72: 111-127.
Vannucci RC, Perlman JM. Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics 1997; 100: 1004-1014.
Gunn AJ, Gunn TR. The ‘pharmacology’ of neural rescue with cerebral hypothermia. Early Hum Dev 1998; 53: 19-35.
Ilcor 2005 Guidelines. Circulation 2005; 112: III-91-III-99.
Fritz KI, Ashraf QM, Mishra OP, Delivoria-Papadopoulos M. Effect of moderate hypocapnic ventilation on nuclear DNA fragmentation and energy metabolism in the cerebral cortex of newborn piglets. Pediatr Res 2001; 50: 586-589.
Vento M, Sastre J, Asensi M, Viña J. Room-air resuscitation causes less damage to heart and kidney than 100% oxygen. Am J Resp Crit Care Med 2005; 172: 1-6.
Saugstad OD, Ramji S, Vento M. Resuscitation of depressed newborn infants with ambient air or pure oxygen: a meta-analysis. Biol Neonate 2005; 87: 27-34.
Whitelaw A. Systematic review of therapy after hypoxic-ischemic brain injury in the perinatal period. Semin Neonatol 2000; 5: 33-40.
Yager JY, Armstrong EA, Miyashita H, Wirrell EC. Prolonged neonatal seizures exacerbate hypoxic-ischemic brain damage: correlation with cerebral energy metabolism and excitatory amino acid release. Dev Neurosci 2002; 24: 367-381.
Vento M, Asensi M, Sastre J, García-Sala F, Pallardó FV, Viña J. Resuscitation with room air instead of 100% oxygen prevents oxidative stress in moderately asphyxiated term neonates. Pediatrics 2001; 107: 642-647.
Benders MJNL, Bos AF, Rademaker CMA, Rijken M, Torrance HL, Groenendaal F, van Bel F. Early postnatal allopurinol does not improve short-term outcome after severe birth asphyxia. Arch Dis Child Fetal Neonatal Ed 2006; 91: F163-F165.
Gluckman PD, Wyatt JS, Azzopardi D, Ballard R, Edwards AD, Ferriero DM, Polin RA, Robertson CM, Thoresen M, Whitelaw A, Gunn AJ. Selective head cooling with mild systemic hypothermia after neonatal encephalopathy: multicenter randomized trial. Lancet 2005; 365: 663-670.
Shankaran S, Laptook AR, Ehrenkranz RA, Tyson JE, McDonald SA, Donovan EF, Fanaroff AA, Poole WK, Wright LL, Higgins RD, Finer NN, Carlo WA, Duara S, Oh W, Cotten CM, Stevenson DK, Stoll BJ, Lemons JA, Guillet R, Jobe AH; National Institute of Child Health and Human Development Neonatal Research Network. Whole-body hypothermia for neonates with hypoxic-ischemic encephalopathy. N Engl J Med 2005; 353: 1574-1584.
Sola A, Weng TC, Hamrick SEG, Ferriero DM. Potential for protection and repair following injury to the developing brain: a role for erythropoietin? Pediatr Res 2005; 57: 110R-117R.
Spandou E, Papadopouloua Z, Soubasib V, Karkavelasc G, Simeonidoua C, Pazaitia A, Guiba-Tziampiria O. Erythropoietin prevents long-term sensorimotor deficits and brain injury following neonatal hypoxia-ischemia in rats. Brain Research 2005; 1045: 22-30.
Sola A, Rogido A, Lee BH, Genetta T, Wen TC. Erythropoietin after focal cerebral ischemia activates the Janus Kinase-signal transducer and Activator of Transcription signaling pathway and improves brain injury in postnatal day 7 rats. Pediatr Res 2005; 57: 481-487.
Mechoulam R, Lichtman AH. Stout guards of the central nervous system. Science 2003; 302: 65-66.
Howlett AC, Breivogel CS, Childers SR, Deadwyler SA, Hampson RE, Porrino LJ. Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology 2004; 47: 345-358.
Martínez-Orgado J, Fernández LD, Bonet B, Lizasoain I, Romero J. El sistema cannabinoide y su importancia en el período perinatal. An Pediatr (Barc) 2005; 63: 433-440.
Nagayama T, Sinor AD, Simon RP, Chen J, Graham SH, Jin K, Greenberg DA. Cannabinoids and neuroprotection in global and focal cerebral ischemia and in neuronal cultures. J Neurosci 1999; 19: 2987-2995.
Baker D, Pryce G, Giovannoni G, Thompson AJ. The therapeutic potential of cannabis. Lancet Neurol 2003; 2: 291-298.
Martínez-Orgado J, Fernández-Frutos B, González R, Romero E, Urigüen L, Romero J, Viveros MP. Neuroprotection by the cannabinoid agonist WIN55212 in an in vivo newborn rat model of acute severe asphyxia. Mol Brain Res 2003; 114: 132-139.
Fernández-López D, Martínez-Orgado J, Nuñez E, Romero J, Lorenzo P, Moro MA, Lizasoain I. Characterization of neuroprotective effect of the cannabinoid agonist WIN55212 in an in vitro model of hypoxic-ischemic brain damage in newborn rats. Pediatr Res 2006 (in press).