2019, Número 2
<< Anterior Siguiente >>
Rev Invest Clin 2019; 71 (2)
Fasting Insulin and Alanine Amino Transferase, but not FGF21, Were Independent Parameters Related with Irisin Increment after Intensive Aerobic Exercising
de la Torre-Saldaña VA, Gómez-Sámano MÁ, Gómez-Pérez FJ, Rosas-Saucedo J, León-Suárez A, Grajales-Gómez M, Oseguera-Moguel J, Vega- Beyhart A, Cuevas-Ramos D
Idioma: Ingles.
Referencias bibliográficas: 36
Paginas: 133-140
Archivo PDF: 213.74 Kb.
RESUMEN
Sin resumen.
REFERENCIAS (EN ESTE ARTÍCULO)
Jedrychowski MP, Wrann CD, Paulo JA, et al. Detection and quantitation of circulating human irisin by tandem mass spectrometry. Cell Metab. 2015;22:734-40.
Stepto NK, Benziane B, Wadley GD, et al. Short-term intensified cycle training alters acute and chronic responses of PGC1α and cytochrome C oxidase IV to exercise in human skeletal muscle. PLoS One. 2012;7:e53080.
Boström P, Wu J, Jedrychowski MP, et al. A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature. 2012;481:463-8.
Yan Z, Okutsu M, Akhtar YN, Lira VA. Regulation of exerciseinduced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol (1985). 2011; 110:264-74.
Cuevas-Ramos D, Almeda-Valdés P, Meza-Arana CE, et al. Exercise increases serum fibroblast growth factor 21 (FGF21) levels. PLoS One. 2012;7:e38022.
Zhang X, Yeung DC, Karpisek M, et al. Serum FGF21 levels are increased in obesity and are independently associated with the metabolic syndrome in humans. Diabetes. 2008;57:1246-53.
Cuevas-Ramos D, Aguilar-Salinas CA. Modulation of energy balance by fibroblast growth factor 21. Horm Mol Biol Clin Investig. 2016;30:???.
Nedergaard J, Bengtsson T, Cannon B. Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab. 2007;293:E444-52.
Ouellet V, Labbé SM, Blondin DP, et al. Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans. J Clin Invest. 2012;122: 545-52.
Kelly DP. Medicine. Irisin, light my fire. Science. 2012;336:42-3.
Lee HJ, Lee JO, Kim N, et al. Irisin, a novel myokine, regulates glucose uptake in skeletal muscle cells via AMPK. Mol Endocrinol. 2015;29:873-81.
Huh JY, Panagiotou G, Mougios V, et al. FNDC5 and irisin in humans: I. Predictors of circulating concentrations in serum and plasma and II. MRNA expression and circulating concentrations in response to weight loss and exercise. Metabolism. 2012; 61:1725-38.
Moreno-Navarrete JM, Ortega F, Serrano M, et al. Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab. 2013;98:E769-78.
Crujeiras AB, Zulet MA, Lopez-Legarrea P, et al. Association between circulating irisin levels and the promotion of insulin resistance during the weight maintenance period after a dietary weight-lowering program in obese patients. Metabolism. 2014; 63:520-31.
Tremblay MS, Colley RC, Saunders TJ, Healy GN, Owen N. Physiological and health implications of a sedentary lifestyle. Appl Physiol Nutr Metab. 2010;35:725-40.
Hill J, Timmis A. Exercise tolerance testing. BMJ. 2002;324: 1084-7.
Albrecht E, Norheim F, Thiede B, et al. Irisin-a myth rather than an exercise-inducible myokine. Sci Rep. 2015;5:8889.
Lee P, Linderman JD, Smith S, et al. Irisin and FGF21 are coldinduced endocrine activators of brown fat function in humans. Cell Metab. 2014;19:302-9.
Löffler D, Müller U, Scheuermann K, et al. Serum irisin levels are regulated by acute strenuous exercise. J Clin Endocrinol Metab. 2015;100:1289-99.
Huh JY, Siopi A, Mougios V, Park KH, Mantzoros CS. Irisin in response to exercise in humans with and without metabolic syndrome. J Clin Endocrinol Metab. 2015;100:E453-7.
Daskalopoulou SS, Cooke AB, Gomez YH, et al. Plasma irisin levels progressively increase in response to increasing exercise workloads in young, healthy, active subjects. Eur J Endocrinol. 2014;171:343-52.
Tsuchiya Y, Mizuno S, Goto K. Irisin response to downhill running exercise in humans. J Exerc Nutrition Biochem. 2018;22:12-7.
Korkmaz A, Venojärvi M, Wasenius N, et al. Plasma irisin is increased following 12 weeks of nordic walking and associates with glucose homoeostasis in overweight/obese men with impaired glucose regulation. Eur J Sport Sci. 2018;???:1-9.
Son JS, Chae SA, Testroet ED, Du M, Jun HP. Exercise-induced myokines: a brief review of controversial issues of this decade. Expert Rev Endocrinol Metab. 2018;13:51-8.
Kim KH, Kim SH, Min YK, et al. Acute exercise induces FGF21 expression in mice and in healthy humans. PLoS One. 2013; 8:e63517.
Fletcher JA, Linden MA, Sheldon RD, et al. Fibroblast growth factor 21 and exercise-induced hepatic mitochondrial adaptations. Am J Physiol Gastrointest Liver Physiol. 2016;310:G832-43.
Cuevas-Ramos D, Almeda-Valdes P, Gómez-Pérez FJ, et al. Daily physical activity, fasting glucose, uric acid, and body mass index are independent factors associated with serum fibroblast growth factor 21 levels. Eur J Endocrinol. 2010;163:469-77.
Kharitonenkov A, Shiyanova TL, Koester A, et al. FGF-21 as a novel metabolic regulator. J Clin Invest. 2005;115:1627-35.
Zhang Y, Li R, Meng Y, et al. Irisin stimulates browning of white adipocytes through mitogen-activated protein kinase p38 MAP kinase and ERK MAP kinase signaling. Diabetes. 2014;63: 514-25.
Choi YK, Kim MK, Bae KH, et al. Serum irisin levels in new-onset Type 2 diabetes. Diabetes Res Clin Pract. 2013;100:96-101.
Liu TY, Shi CX, Gao R, et al. Irisin inhibits hepatic gluconeogenesis and increases glycogen synthesis via the PI3K/Akt pathway in Type 2 diabetic mice and hepatocytes. Clin Sci (Lond). 2015; 129:839-50.
Zhang HJ, Zhang XF, Ma ZM, et al. Irisin is inversely associated with intrahepatic triglyceride contents in obese adults. J Hepatol. 2013;59:557-62.
Park MJ, Kim DI, Choi JH, Heo YR, Park SH. New role of irisin in hepatocytes: the protective effect of hepatic steatosis in vitro. Cell Signal. 2015;27:1831-9.
Dushay J, Chui PC, Gopalakrishnan GS, et al. Increased fibroblast growth factor 21 in obesity and nonalcoholic fatty liver disease. Gastroenterology. 2010;139:456-63.
Li H, Fang Q, Gao F, et al. Fibroblast growth factor 21 levels are increased in nonalcoholic fatty liver disease patients and are correlated with hepatic triglyceride. J Hepatol. 2010;53:934-40.
Yilmaz Y, Eren F, Yonal O, et al. Increased serum FGF21 levels in patients with nonalcoholic fatty liver disease. Eur J Clin Invest. 2010;40:887-92.