2006, Número 4
Presión media de la vía aérea con aplicación de presión positiva al final de la espiración estática versus dinámica
León-Gutiérrez MA, Castañón-González JA, Lázaro-Castillo EE, Pech-Quijano JA, Abraján-Hernández OI
Idioma: Español
Referencias bibliográficas: 35
Paginas: 243-248
Archivo PDF: 87.04 Kb.
RESUMEN
Introducción: la presión positiva al final de la espiración (PEEP) incrementa la presión media de la vía aérea (Paw) en pacientes con ventilación mecánica. Con el objetivo de comparar la presión media de la vía aérea que se obtiene en un mismo paciente con ventilación mecánica controlada por presión al aplicar presión positiva al final de la espiración estática (PEEPe) y al aplicar presión positiva al final de la espiración dinámica (PEEPd), se realizó un estudio prospectivo, longitudinal, experimental, comparativo y de grupos relacionados.
Material y métodos: se incluyeron pacientes con ventilación mecánica controlada por presión con SaO
2 > 90 % y FiO
2 ‹ 50%, con PEEPe de 4 cm de H
2O y relación inspiración-espiración de 1:2. Después de 15 minutos se midió la presión media de la vía aérea (fase 1). Posteriormente se modificó la relación inspiración-espiración a 2:1 por 15 minutos, con el fin de generar PEEPd (fase 2). Una vez registrada la presión media de la vía aérea, en la fase 3 se regresó de nuevo a la relación inspiración-espiración 1:2, sustituyendo la PEEPd obtenida en la fase 2 por PEEPe para mantener la misma presión positiva al final de la espiración total (PEEPt) de la fase 2 (PEEPt = PEEPe + PEEPd). Concluidos los 15 minutos de estabilización, se registró de nuevo la presión media de la vía aérea y la PEEPt. Se utilizaron las pruebas de Friedman y Wilcoxon, considerando una p ‹ 0.05 como estadísticamente significativa.
Resultados: se estudiaron 38 pacientes. La PEEPt fue de 4, 8 y 8 cm de H
2O, y las medianas de la presión media de la vía aérea fueron de 8.7, 13.8 y 11.4 cm de H
2O en las fases 1, 2 y 3 respectivamente (p ‹ 0.05).
Conclusiones: en un mismo paciente con ventilación mecánica controlada por presión y con los mismos niveles de PEEPt, la presión media de la vía aérea es mayor al utilizar PEEPd que PEEPe.
REFERENCIAS (EN ESTE ARTÍCULO)
Marini JJ, Ravenscraft SA. Mean airway pressure: physiologic determinants and clinical importance. Part 1: Phsysiologic determinats and measurements. Crit Care Med 1992;20:1461-1472.
Marini JJ, Ravenscraft SA. Mean airway pressure: physiologic determinants and clinical importance. Part 2: Clinical implications. Crit Care Med 1992;20:1604-1616.
Gurevitch MJ, Van Dyke J, Young ES, et al. Improved oxygenation and lower peak airway pressure in severe adult respiratory distress syndrome: treatment with inverse ratio ventilation. Chest 1986;89: 211-213.
Abraham E, Yoshihara G. Cardiorespiratory effects of pressure controlled, inverse ratio ventilation in severe respiratory failure. Chest 1989;96:1356-1359.
Fuhrman BP, Smith-Wright DL, Venkataraman S, et al. Proximal mean airway pressure: a good estimator of mean alveolar pressure during continuous positive pressure breathing. Crit Care Med 1989;17:666-670.
Gallagher TJ, Banner MJ. Mean airway pressure as a determinant of oxygenation. Crit Care Med 1980;8:244.
Slutsky AS. Mechanical ventilation. Chest 1993;104:1833-1859.
Peruzzi WT. The Current status of PEEP. Resp Care 1996;41:273-284.
Marcy TW. Inverse ratio ventilation. In: Tobin MJ, ed. Principles and Practice of Mechanical Ventilation. New York: McGraw-Hill;1994. pp 319-332.
Berman LS, Downs JB, Van Eeden H. Inspiratory/expiration ratio: is mean airway pressure the difference? Crit Care Med 1981;9:775-777.
Kacmarek RM, Hes D. Pressure-controlled inverse ratio ventilation: panacea or autoPEEP? Respir Care 1990;35:945-948.
Ravenscraft SA, Burke WC, Marini JJ. Volume cycled decelerating flow: an alternative form of mechanical ventilation. Chest 1992; 101:1342-1351.
Marini JJ. Dynamic hyperinflation. In: Physiological Basis of Ventilatory Support. New York: Marcel Dekker;1998. pp. 453-485.
Marcy TW, Burke WC, Adams AB, et al. Mean alveolar pressure is higher during ventilation with constant pressure than with constant flow or sinusoidal flow wave forms. Am Rev Resp Dis 1990;141(4, pt2):A239.
Gottfried SB, Reissman H, Ranieri VM. A simple method for the measurement of intrinsic positive end-expiratory pressure during controlled and assisted modes of mechanical ventilation. Crit Care Med 1992;5:621-629.
Castañón-González JA, León-Gutierrez MA, Gallegos-Pérez H, Pech-Quijano J, Matínez-Gutiérrez M, Olvera-Chávez A. Mecánica pulmonar, índice de oxigenación y ventilación alveolar en pacientes con dos modalidades de ventilación mecánica controlada. Un estudio comparativo de tipo cruzado. Cir Ciruj 2003;71:374-378.
Boros SJ. Variations in inspiratory:expiratory ratio and airway pressure waveform during mechanical ventilation. The significance of mean airway pressure. J Pediatr 1979;94:114-117.
Castañón-González JA, Vázquez-de Anda G, Martínez-Gutiérrez MA, León-Gutiérrez MA, Lachmann B, Gallegos-Pérez H, et al. Procedimiento de reclutamiento alveolar en pacientes con insuficiencia respiratoria aguda y asistencia mecánica ventilatoria: correlación entre la mecánica pulmonar, el índice de oxigenación y tomografía computada de tórax. Cir Ciruj 1998;66:189-195.
Fessler HE, Brower RG. Protocols for lung protective ventilation. Crit Care Med 2005;33:S223-227.
MacIntyre NR. Current issues in mechanical ventilation for respiratory failure. Chest 2005;128:S561-567.
Malarkhan N, Snook NJ, Lumb AB. New aspects of ventilation in acute lung injury. Anaesthesia 2003;58:647-667.
Stewart AR, Finner NN, Peters KL. Effects of alterations of inspiratory and expiratory pressure and inspiratory/expiratory ratios on mean airway pressure, blood gases and intracranial pressure. Pediatrics 1981;67:474-481.
Cheney FW, Burnham SC. Effect of ventilatory pattern on oxygenation in pulmonary edema. J Appl Physiol 1971;31:909-912.
Cournand A, Motley HL, Werko L, et al. Physiologic studies of effects of intermintent positive pressure breathing on cardiac output in man. Am J Physiol 1948;152:162-174.
Cole AGH, Weller SF, Sykes MK. Inverse ratio ventilation compared with PEEP in adult respiratory failure. Intensive Care Med 1984; 10:227-232.
Hickling KG, Henderson SJ, Jackson R. Low mortality associated with low volume, pressure ventilation with permissive hypercapnia in severe adult respiratory distress syndrome. Intensive Care Med 1990;16:372-377.
Crotti S, Pelosi P, Mascheroni D, et al. The effect of extrinsic PEEP on lung inflation and regional compliance in mechanically ventilated patients: a CT scan study. Intensive Care Med 1995;21:5135.
Tharatt RS, Allen RP, Albertson TE. Pressure controlled inverse ratio in severe adult respiratory failure. Chest 1988;94:755-762.
Suter PM, Francois L. Positive end-expiratory pressure in acute respiratory failure: pathophysiology and practical guidelines. In: Physiological Basis of Ventilatory Support, New York: Marcel Dekker;1998. pp. 873-885.
Marcy TW, Marini JJ. Inverse ratio ventilation in ARDS: rationale and implementation. Chest 1990;100:494-504.
Patel H, Yang KL. Variability of intrinsic positive end-expiratory pressure in patients receiving mechanical ventilation. Crit Care Med 1995;23:1074-1079.
Haake R, Schlichting R, Ulstad DR, et al. Barotrauma: pathophysiology, risk factors and prevention. Chest 1987;91:608-613.
Cole AGH, Weller SF, Sykes MK. Inverse ratio ventilation compared with PEEP in adult respiratory failure. Intensive Care Med 1984; 10:227-232.
Kacmarek RM, Kirmse M, Nishimura M, et al. The effects of applied vs auto-PEEP on local lung unit pressure and volume in a forunit lung model. Chest 1995;108:1073-1079.
Shapiro R, Kacmarek RM. Monitoring of the mechanically ventilated patient. In: Physiological Basis of Ventilatory Support. New York: Marcel Dekker;1998. pp. 709-771.