2019, Número 1
<< Anterior Siguiente >>
Rev Mex Neuroci 2019; 20 (1)
Neurobiología del trastorno de estrés postraumático
Zegarra-Valdivia JA, Chino-Vilca BN
Idioma: Español
Referencias bibliográficas: 72
Paginas: 21-28
Archivo PDF: 152.71 Kb.
RESUMEN
A lo largo de la vida, las personas suelen estar expuestas a situaciones traumáticas, lo que en muchas ocasiones provoca
la aparición del trastorno de estrés postraumático (TEPT), cuya prevalencia alcanza del 5 al 10% a nivel mundial. Sin embargo,
pese a la gran cantidad de investigaciones que abordan el trastorno, la evidencia científica respecto a los procesos
neurobiológicos aún no es concluyente. La presente revisión busca profundizar en el conocimiento de las características
neurobiológicas más relevantes de los pacientes con TEPT. Se realiza una descripción de las áreas cerebrales involucradas
y los efectos del TEPT en su funcionamiento, incluyendo un análisis del compromiso activo del eje hipotálamico-hipofisiario-
adrenal, la hiperactivación y excesiva respuesta adrenérgica en el sistema nervioso autónomo, además de una breve
descripción de los modelos animales más usados en las investigaciones. Se debe de tener en cuenta que la mayoría de
los trastornos neuropsiquiátricos no comportan la alteración específica de una red neural, área o sistema, sino que en su
conjunto presentan una alteración de distintos sistemas simultáneamente, que se solapan, y a su vez se hacen evidentes
con endofenotipos neurocognitivos relativamente específicos, que apoyados en la investigación básica y la utilización con
modelos animales proporcionaría los conocimientos de la alteración celular y molecular relacionada, aspectos significativos
en la evaluación, tratamiento y seguimiento de los pacientes.
REFERENCIAS (EN ESTE ARTÍCULO)
Herrera-Lopez V, Cruzado L. Estrés postraumático y comorbilidad asociada en víctimas de la violencia política de una comunidad campesina de Huancavelica, Perú. 2013. Rev Neuropsiquiatr. 2014;77(3):144.
Gillespie C, Bradley B, Mercer K, Smith A, Conneely K, Gapen M, et al. Trauma exposure and stress-related disorders in inner city primary care patients. Gen Hosp Psychiatry. 2009;31(6):505-14.
Kessler RC, Aguilar-Gaxiola S, Alonso J, Benjet C, Bromet EJ, Cardoso 8, et al. Trauma and PTSD in the WHO World Mental Health Surveys. Eur J Psychotraumatol. 2017; 8(sup5):1353383.
Alani B, Maghsoudi N, Khatibi A, Noureddini M, Asefifar F, Shams J. Study of the variations in apoptotic factors in hippocampus of male rats with posttraumatic stress disorder. Adv Biomed Res. 2013;2(4):42.
Elzinga BM, Schmahl CG, Vermetten E, van Dyck R, Bremner JD. Higher cortisol levels following exposure to traumatic reminders in abuse-related PTSD. Neuropsychopharmacology. 2003;28(9):1656-65.
Aguirre P, Cova F, Domarchi MP, Garrido C, Mundaca I, Rincón P, et al. Estrés postraumático en mujeres víctimas de violencia doméstica. Rev Chil Neuropsiquiatr. 2010;48(2):114-22.
American Psychiatric Association. Diagnostic And Statistical Manual Of Mental Disorders, Fifth Edition; American Psychiatric Association Publishing; 2013.
Vermetten E, Lanius R a. Biological and clinical framework for posttraumatic stress disorder. Handb Clin Neurol. 2012;106:291-342.
Yehuda R, Hoge CW, McFarlane AC, Vermetten E, Lanius RA, Nievergelt CM, et al. Post-traumatic stress disorder. Nat Rev Dis Primers. 2015;1:15057.
Davidson JR, Hughes D, Blazer DG, George LK. Post-traumatic stress disorder in the community: an epidemiological study. Psychol Med. 1991; 21(3):713-21.
Daskalakis NP, Lehrner A, Yehuda R. Endocrine aspects of post-traumatic stress disorder and implications for diagnosis and treatment. Endocrinol Metab Clin North Am. 2013;42(3):503-13.
Arbanas G. Patients with combat-related and war-related posttraumatic stress disorder 10 years after diagnosis. Croat Med J. 2010;51(3):209-14.
Goswami S, Rodríguez-Sierra O, Cascardi M, Paré D. Animal models of post-traumatic stress disorder: Face validity. Front Neurosci. 2013;7:1-14.
Zannas AS, Provencal N, Binder EB. Epigenetics of posttraumatic stress disorder: Current evidence, challenges, and future directions. Biol Psychiatry. 2015;78(5):327-35.
Averill LA, Purohit P, Averill CL, Boesl MA, Krystal JH, Abdallah CG. Glutamate dysregulation and glutamatergic therapeutics for PTSD: Evidence from human studies. Neurosci Lett. 2017;649:147-55.
Liberzon I, Abelson JL. Context processing and the neurobiology of post-traumatic stress disorder. Neuron. 2016;92(1):14-30.
Whitaker A, Gilpin N, Edwards S. Animal models of post-traumatic stress disorder and recent neurobiological insights. Behav Pharmacol. 2013; 18(9):1199-216.
Koenigs M, Grafmann J. Post-traumatic stress disorder: The role of medial prefrontal cortex and amygdala. Neuroscientist. 2009;15(5):540-8.
Moench KM, Wellman CL. Stress-induced alterations in prefrontal dendritic spines: Implications for post-traumatic stress disorder. Neurosci Lett. 2014:1-5.
Zegarra-Valdivia J, Vilca BC. Mentalización y teoría de la mente. 2017; 80(3):189-99.
Bremner JD, Elzinga B, Schmahl C, Vermetten E. Structural and functional plasticity of the human brain in posttraumatic stress disorder. Prog Brain Res. 2008;167(07):171-86.
Radley JJ, Sisti HM, Hao J, Rocher AB, McCall T, Hof PR, et al. Chronic behavioral stress induces apical dendritic reorganization in pyramidal neurons of the medial prefrontal cortex. Neuroscience. 2004;125(1):1-6.
Maroun M. Medial prefrontal cortex: multiple roles in fear and extinction. Neuroscientist. 2013;19(4):370-83.
Hains AB, Vu MA, Maciejewski PK, van Dyck CH, Gottron M, Arnsten AF. Inhibition of protein kinase C signaling protects prefrontal cortex dendritic spines and cognition from the effects of chronic stress. Proc Natl Acad Sci U S A. 2009;106(42):17957-62.
Lisieski MJ, Eagle AL, Conti AC, Liberzon I, Perrine SA. Single-prolonged stress: A review of two decades of progress in a rodent model of post-traumatic stress disorder. Front Psychiatry. 2018;9:196.
Geuze E, Westenberg HGM, Heinecke A, de Kloet CS, Goebel R, Vermetten E. Thinner prefrontal cortex in veterans with posttraumatic stress disorder. Neuroimage. 2008;41(3):675-81.
Tian F, Yennu A, Smith-Osborne A, Gonzalez-Lima F, North CS, Liu H. Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): A functional near infrared spectroscopy study. NeuroImage Clin. 2014;4:808-19.
Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP, Gilbertson MW, et al. Biological studies of post-traumatic stress disorder. Nat Rev Neurosci. 2012;13(11):769-87.
Arnsten AFT, Raskind MA, Taylor FB, Connor DF. The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiol Stress. 2015; 1:89-99.
Cohen H, Kozlovsky N, Matar MA, Zohar J, Kaplan Z. Distinctive hippocampal and amygdalar cytoarchitectural changes underlie specific patterns of behavioral disruption following stress exposure in an animal model of PTSD. Eur Neuropsychopharmacol. 2014;24(12):1925-44.
Liberzon I, Taylor SF, Amdur R, Jung TD, Chamberlain KR, Minoshima S, et al. Brain activation in PTSD in response to trauma-related stimuli. Biol Psychiatry. 1999;45(7):817-26.
Sapolsky RM, Uno H, Rebert CS, Finch CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci. 1990;10(9):2897-902.
Mcewen BS, Bowles NP, Gray JD, Hill MN, Hunter RG, Karatsoreos IN and Nasca C. Mechanisms of stress in the brain. 2015;18(10):1353-63.
Bremner JD, Vythilingam M, Vermetten E, Southwick SM, McGlashan T, Nazeer A, et al. MRI and PET study of deficits in hippocampal structure and function inwomen with childhood sexual abuse and posttraumatic stress disorder. Am J Psychiatry. 2003;160(5):924-32.
Carrion VG, Wong SS. Can traumatic stress alter the brain? Understanding the implications of early trauma on brain development and learning. J Adolesc Heal. 2012;51(2 SUPPL.):S23-8.
Malivoire BL, Girard TA, Patel R, Monson CM. Functional connectivity of hippocampal subregions in PTSD: relations with symptoms. BMC Psychiatry. 2018;18(1):129.
Mcewen BS. Physiology and neurobiology of stress and adaptation : Central role of the brain. Physiol Rev. 2007;87(3):873-904.
Smith S, Vale W. The role of the hypothalamic-pituitary-adrenal axis in neuroendocrine responses to stress. Dialogues Clin Neurosci. 2006; 8(May):383-95.
Hayes AS, Essex MJ, Oler JA, Davidson R J, Ruttle PL, Molloy EK, et al. Developmental pathways to amygdala-prefrontal function and internalizing symptoms in adolescence. Nat Neurosci. 2012;15(12):1736-41.
Torres E, Aguilera G, Herman J, Fiedler J, Deak T, Cordeiro M. Novel aspects of glucocorticoid actions. J Neuroendocrinol. 2014;26(9):557-72.
Geer EB, Islam J, Buettner C. Mechanisms of glucocorticoid-induced insulin resistance: Focus on adipose tissue function and lipid metabolism. Endocrinol Metab Clin North Am. 2014;43(1):75-102.
Pitman RK, Lasko NB, Paulus LA, Yehuda R, Carson MA, Metzger LJ, et al. Basal and suppressed salivary cortisol in female Vietnam nurse veterans with and without PTSD. Psychiatry Res. 2008;161(3):330-5.
Stein MB, Yehuda R, Koverola C, Hanna C. Enhanced dexmethasone suppression of plasma cortisol in adult women traumatized by childhood sexual abuse. Biol Psychiatry. 1997;42(96):680-6.
Morris MC, Rao U. Psychobiology of PTSD in the acute aftermath of trauma: Integrating research on coping, HPA function and sympathetic nervous system activity. Asian J Psychiatr. 2013;6(1):3-21.
Kallarackal AJ, Kvarta MD, Cai X, Cammarata E, Bailey AM, Thompson SM, et al. Chronic stress induces a selective decrease in AMPA receptor-mediated synaptic excitation at hippocampal temporoammonic- CA1 synapses. J Neurosci. 2013;33(40):15669-74.
Griffin MG, Resick PA, Yehuda R. Enhanced cortisol suppression following dexamethasone administration in domestic violence survivors. Am J Psychiatry. 2005;162(6):1192-9.
Yehuda R, Boisoneau D, Lowy MT, Giller EL. Dose-response changes in plasma cortisol and lymphocyte glucocorticoid receptors following dexamethasone administration in combat veterans with and without posttraumatic stress disorder. Arch Gen Psychiatry. 1995;52(7): 583-93.
Yehuda R. Status of glucocorticoid alterations in post-traumatic stress disorder. Ann N Y Acad Sci. 2009;1179:56-69.
Xiong F, Zhang L. Role of the hypothalamic-pituitary-adrenal axis in developmental programming of health and disease. Front Neuroendocrinol. 2013;34(1):27-46.
Zovkic IB, Sweatt JD. Epigenetic mechanisms in learned fear: implications for PTSD. Neuropsychopharmacology. 2013;38(1):77-93.
Koerner KM. Establishing a protocol for dexamethasone suppression testing in mice. Honor Theses. 1997;Paper 205.
Cole MA, Kim PJ, Kalman BA, Spencer RL. Dexamethasone suppression of corticosteroid secretion: Evaluation of the site of action by receptor measures and functional studies. Psychoneuroendocrinology. 2000; 25(2):151-67.
Yehuda R, Golier J. Is there a rationale for cortisol-based treatments for PTSD? Expert Rev Neurother. 2009;9(8):1113-5.
Nijdam MJJ, van Amsterdam JGCGC, Gersons BPRPR, Olff M. Dexamethasone- suppressed cortisol awakening response predicts treatment outcome in posttraumatic stress disorder. J Affect Disord. 2015;184:205‑8.
Jovanovic T, Phifer J, Sicking K, Weiss T, Norrholrn S, Bradley B, et al. Cortisol suppression by dexamethasone reduces exaggerated fear responses in posttraumatic stress disorder. Psychoneuroendocrinology. 2011;36(10):1540-52.
Strawn JR, Geracioti TD. Noradrenergic dysfunction and the psychopharmacology of posttraumatic stress disorder. Depress Anxiety. 2008; 25(3):260-71.
Flores Á, Saravia R, Maldonado R, Berrendero F. Orexins and fear: Implications for the treatment of anxiety disorders. Trends Neurosci. 2015;38(9):550-9.
Wilson CB, Ebenezer PJ, McLaughlin LD, Francis J. Predator exposure/ psychosocial stress animal model of post-traumatic stress disorder modulates neurotransmitters in the rat hippocampus and prefrontal cortex. PLoS One. 2014;9(2):e89104.
Lipov E, Kelzenberg B. Sympathetic system modulation to treat post-traumatic stress disorder (PTSD): A review of clinical evidence and neurobiology. J Affect Disord. 2012;142(1-3):1-5.
Tempesta D, Orsolini L, Fornaro M, Tomasetti C, Bartolomeis A, Sepede G, et al. Targeting the noradrenergic system in posttraumatic stress disorder: A systematic review and meta-analysis of prazosin trials. Curr Drug Targets. 2015;16(10):1094-106.
Sarro E, Sullivan R, Barr G. Unpredictable neonatal stress enhances adult anxiety and alters amygdala gene expression related to serotonin and GABA. Neuroscience. 2014;31(258):147-61.
Davis M. Translational research. NMDA Recept fear extinction Implic Cogn Behav Ther. 2011;(13):463-74.
Nishi D, Hashimoto K, Noguchi H, Hamazaki K, Hamazaki T, Matsuoka Y. Glutamatergic system abnormalities in posttraumatic stress disorder. Psychopharmacology (Berl). 2015;232(23):4261-8.
Gao J, Wang H, Liu Y, Li Y, Chen C, Liu L, et al. Glutamate and GABA imbalance promotes neuronal apoptosis in hippocampus after stress. Med Sci Monit. 2014;20:499-512.
Heidenreich JO, Seifert F, Bubner M, Colla M, Schubert F, Luborzewski A, et al. Glutamate as a spectroscopic marker of hippocampal structural plasticity is elevated in long-term euthymic bipolar patients on chronic lithium therapy and correlates inversely with diurnal cortisol. Mol Psychiatry. 2009;14(7):696-704.
Inutsuka A, Yamashita A, Chowdhury S, Nakai J, Ohkura M, Taguchi T, et al. The integrative role of orexin/hypocretin neurons in nociceptive perception and analgesic regulation. Sci Rep. 2016;6.
Vaiva G, Thomas P, Ducrocq F, Fontaine M, Boss V, Devos P, et al. Low posttrauma GABA plasma levels as a predictive factor in the development of acute posttraumatic stress disorder. Biol Psychiatry. 2004;55(3):250-4.
Montel S, Cohn A, Donne C, Schwan R, Hingray C, El-Hage W, et al. Link between psychogenic nonepileptic seizures and complex PTSD: A pilot study. Eur J Trauma Dissociation. 2017;1(2):131-6.
Maguire J, Salpekar JA. Stress, seizures, and hypothalamic-pituitary-adrenal axis targets for the treatment of epilepsy. Epilepsy Behav. 2013; 26(3):352-62.
Liberzon I, Khan S, Young E, Cohen H, Matar M, Joseph Z. Animal models of post-traumatic stress disorder. En: Steckler T, Kalin N, Reul J, editores. Handbook Stress Brain. 2013;15:388-409.
Barnum CJ, Pace TWW, Hu F, Neigh GN, Tansey MG. Psychological stress in adolescent and adult mice increases neuroinflammation and attenuates the response to LPS challenge. J Neuroinflammation. 2012;9(1):9.
Zegarra-Valdivia JA. Insulin-like growth factor type 1 and its relation with neuropsychiatric disorders. Medwave. 2017;17(07):e7031.