2018, Número 4
<< Anterior Siguiente >>
Rev Latin Infect Pediatr 2018; 31 (4)
Tratamiento de la tuberculosis farmacorresistente: nueva posición de la OMS y su impacto en pediatría
González SN, Castillo BJI
Idioma: Español
Referencias bibliográficas: 45
Paginas: 159-166
Archivo PDF: 240.65 Kb.
RESUMEN
La tuberculosis es la causa número uno de muerte atribuible por un solo microorganismo a nivel mundial. La mortalidad de la tuberculosis farmacorresistente oscila entre 40 y 70%, más alta que algunos tipos de cáncer. La Organización Mundial de la Salud recomienda a partir de agosto de 2018 un nuevo esquema de tratamiento para tuberculosis farmacorresistente; sin embargo, parte de la nueva reagrupación contempla dentro del grupo A fármacos como la bedaquilina, el cual cuenta con pocos estudios en niños. El presente trabajo pretende describir los estudios realizados en niños sobre cada grupo de fármacos y los esquemas de tratamiento.
REFERENCIAS (EN ESTE ARTÍCULO)
Global tuberculosis report 2017. Geneva: World Health Organization; 2017. Licence: CC BY-NCSA 3.0 IGO.
Lange C, Chesov D, Heyckendorf J, Leung CC, Udwadia Z, Dheda K. Drug-resistant tuberculosis: An update on disease burden, diagnosis and treatment. Respirology. 2018; 23 (7): 656-673.
Khatami A, Marais B. The epidemiology of tuberculosis in children. Journal of Pediatric Infectious Diseases. 2017; 13 (02): 091-100.
Tuberculosis en las Américas 2018. Washington: Organización Panamericana de la Salud; 2018. OPS/CDE/18-036.
Tuberculosis en las Américas. Regional report 2015, epidemiology control and financing. Organización Panamericana de la Salud.
Informe de la X reunión regional de jefes de programas nacionales de control de tuberculosis de las Américas. Organización Panamericana de la Salud 2016.
VII Reunión regional de países de baja incidencia de TB en las Américas. Organización Panamericana de la Salud. 2016.
Jenkins HE, Tolman AW, Yuen CM, Parr JB, Keshavjee S, Pérez-Vélez CM et al. Incidence of multidrug-resistant tuberculosis disease in children: systematic review and global estimates. Lancet. 2014; 383 (9928): 1572-1579.
Dodd PJ, Sismanidis C, Seddon JA. Global burden of drug-resistant tuberculosis in children: a mathematical modelling study. Lancet Infect Dis. 2016; 16 (10): 1193-1201.
Jenkins HE, Yuen CM. The burden of multidrug-resistant tuberculosis in children. Int J Tuberc Lung Dis. 2018; 22 (5): S3-S6.
WHO treatment guidelines for drug-resistant tuberculosis. Geneva: World Health Organization: 2017.
Johnson JL, Hadad DJ, Boom WH et al. (2006). Early and extended early bactericidal activity of levofloxacin, gatifloxacin and moxifloxacin in pulmonary tuberculosis. Int J Tuberc Lung Dis 10: 605.
Garcia-Prats AJ, Draper HR, Finlayson H, Winckler J, Burger A, Fourie B et al. Clinical and cardiac safety of long-term levofloxacin in children for multidrug-resistant tuberculosis. Clin Infect Dis. 2018; 67 (11): 1777-1780.
Chien S, Wells TG, Blumer JL, Kearns GL, Bradley JS, Bocchini JA Jr. et al. Levofloxacin pharmacokinetics in children. J Clin Pharmacol. 2005; 45 (2): 153-160.
Denti P, Garcia-Prats AJ, Draper HR, Wiesner L, Winckler J, Thee S, et al. Levofloxacin population pharmacokinetics in South African children treated for multidrug-resistant tuberculosis. Antimicrob Agents Chemother. 2017; 62 (2): pii: e01521-17.
Grayson L. The use of antibiotics, a clinical review of antibacterial, antifungal, antiparasitic and antiviral drugs. 6th ed. ASM press. 2017.
Diacon AH, Donald PR, Pym A, Grobusch M, Patientia RF, Mahanyele R et al. Randomized pilot trial of eight weeks of bedaquiline (TMC207) treatment for multidrug-resistant tuberculosis: long-term outcome, tolerability, and effect on emergence of drug resistance. Antimicrob Agents Chemother. 2012; 56 (6): 3271-3276.
Schnippel K, Ndjeka N, Maartens G, Meintjes G, Master I, Ismail N et al. Effect of bedaquiline on mortality in South African patients with drug-resistant tuberculosis: a retrospective cohort study. Lancet Repir Med. 2018; 6 (9): 699-706.
The collaborative group for the meta-analysis of individual data in MDT-TB. Treatment correlates of successful outcomes in pulmonary multidrug-resistan tuberculosis: an individual patient data meta-analysis. Lancet. 2018; 392 (10150): 821-834.
Guglielmetti L, Le Du D, Veziris N, Caumes E, Marigot-Outtandy D, Yazdanpanah Y, Robert J, Frechet-Jachym M; Mycobacteria, M-TMGotFNRCf; the Physicians of the French MDRTBC. Is bedaquiline as effective as fluoroquinolones in the treatment of multidrug-resistant tuberculosis? Eur Respir J. 2016; 48: 582-585.
Rapid communication: key changes to treatment of multidrug- and rifampicin-resistant tuberculosis (MDR/RR-TB). Licence: CC BY-NC-SA 3.0 IGO.
Lee M, Lee J, Carroll MW, Choi H, Min S, Song T et al. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med. 2012; 367: 1508-1518.
Tang S, Yao L, Hao X, Zhang X, Liu G, Liu X et al. Efficacy, safety and tolerability of linezolid for the treatment of XDR-TB: a study in China. Eur Respir J. 2015; 45: 161-170.
Migliori GB, Eker B, Richardson MD, Sotgiu G, Zellweger JP, Skrahina A et al. A retrospective TBNET assessment of linezolid safety, tolerability and efficacy in multidrug-resistant tuberculosis. Eur Respir J. 2009: 34 (2): 387-393.
Weyer K. Annexure 2. DOTS-Plus for multidrug resistant tuberculosis patients in South Africa. Systematic evaluation of a standardised treatment regimen applied under tuberculosis control programme conditions; 2004.
Hung WY, Yu MC, Chiang YC, Chang JH, Chiang CY, Chang CC et al. Serum concentrations of cycloserine and outcome of multidrug-resistant tuberculosis in Northern Taiwan. Int J Tuber Lung Dis. 2014; 18 (5): 601-606.
Zhu H. Therapeutic drug monitoring of cycloserine and linezolid during anti-tuberculosis treatment in Beijing, China. Int J Tuberc Lung Dis. 2018; 22 (8): 931-936.
Seddon JA, Hesseling AC, Marais BJ, McIlleron H, Peloquin CA, Donald PR et al. Paediatric use of second-line anti-tuberculosis agents: a review. Tuberculosis (Edinb). 2012; 92 (1): 9-17.
Rastogi N, Labrousse V, Goh KS. In vitro activities of fourteen antimicrobial agents against drug susceptible and resistant clinical isolates of Mycobacterium tuberculosis and comparative intracellular activities against the virulent H37Rv strain in human macrophages. Curr Microbiol. 1996; 33: 167e75.
Kroger A, Pannikar V, Htoon MT, Jamesh A, Katoch K, Krishnamurthy P et al. International open trial of uniform multi-drug therapy regimen for 6 months for all types of leprosy patients: rationale, design and preliminary results. Trop Med Int Health. 2008; 13 (5): 594-602.
Dheda K, Chang KC, Guglielmetti L, Furin J, Schaaf HS, Chesov D, Esmail A et al. Clinical management of adults and children with MDR and XDR-TB, Clinical Microbiology and Infection. 2016; 23 (3): 131-140.
Schaaf HS, Victor TC, Venter A, Brittle W, Jordaan AM, Hesseling AC et al. Ethionamide cross- and co-resistance in children with isoniazid-resistant tuberculosis. Int J Tuberc Lung Dis. 2009; 13 (11): 1355-1359.
Auclair B, Nix DE, Adam RD, James GT, Peloquin CA. Pharmacokinetics of ethionamide administered under fasting conditions or with orange juice, food, or antacids. Antimicrob Agents Chemother. 2001; 45: 810e4.
Thee S, Seifart HI, Rosenkranz B, Hesseling AC, Magdorf K, Donald PR et al. Pharmacokinetics of ethionamide in children. Antimicrob Agents Chemother. 2011; 55 (10): 4594-4600.
Jaganath D, Lamichhane G, Shah M. Carbapenems against Mycobacterium tuberculosis: a review of the evidence. Int J Tuber Lung Dis. 2016; 20 (11); 1436-1447.
De Lorenzo S, Alffenaar JW, Sotgiu G, Centis R, D’Ambrosio L, Tiberi S et al. Efficacy and safety of meropenem-clavulanate added to linezolid-containing regimens in the treatment of MDR-/XDR-TB. Eur Respir J. 2013; 41 (6): 1386-1392.
Barthod L, Lopez JG, Curti C, Bornet C, Roche M, Montana M et al. News on therapeutic management of MDR tuberculosis: a literature review. J Chemotherapy. 2017; 30 (1): 1-15.
World Health Organization. The use of delamanid in the treatment of multidrug-resistant tuberculosis in children and adolescents: interim policy guidance. WHO/HTM/TB/2016.14. Geneva, Switzerland: WHO, 2016. http://who.int/tb/ publications/Delamanid_interim_policy/en/. Accessed September 2017.
Garcia-Prats AJ, Svensson EM, Weld ED, Schaaf HS, Hesseling AC. Current status of pharmacokinetic and safety studies of multidrug-resistant tuberculosis treatment in children. Int J Tuberc Lung Dis. 2018; 22 (5): 15-23.
Moodley R, Godec T. Short-course treatment for multidrug-resistant tuberculosis: the STREAM trials. Eur Respir Rev. 2016; 25: 29-35.
Munoz-Torrico M, Salazar MA, Millán MJM, Martínez Orozco JA, Narvaez Diaz LA, Segura Del Pilar M et al. Eligibility for the shorter regimen for multidrug-resistant tuberculosis in Mexico. Eur Respir J. 2018; 51 (3): pii: 1702267.
Ettehad D, Schaaf HS, Seddon JA, Cooke GS, Ford N. Treatment outcomes for children with multidrug-resistant tuberculosis: a systematic review and meta-analysis. Lancet Infect Dis. 2012; 12 (06): 449-456.
Galli L, Lancella L, Garazzino S, Tadolini M, Matteelli A, Battista MG et al. Recommendation for treating children with drug-resistant tuberculosis. Pharmacological Research. 2016; 106: 176-182.
Mellado-Peña MJ. Actualización del tratamiento de la tuberculosis en niños. An Pediatr Barc. 2018; 88 (1): 52.e1-52.e12.
Vasava MS, Nair SG, Rathwa SK, Patel DB. Development of new drug-regimens against multidrug-resistant tuberculosis. Indian Journal of Tuberculosis. 2018.