2018, Número 6
Regeneración de la pulpa dental. Una revisión de la literatura
Astudillo-Ortiz E
Idioma: Español
Referencias bibliográficas: 23
Paginas: 350-357
Archivo PDF: 275.36 Kb.
RESUMEN
El objetivo del presente artículo es la revisión de la literatura desde enero 2013 hasta diciembre 2017 con el fin de encontrar el enfoque actual de la ingeniería de tejidos para regenerar la pulpa dental. Se realizó una revisión bibliográfica en diciembre de 2017 en el motor de búsqueda PubMed utilizando los descriptores:
dental regeneration, pulp regeneration y dental pulp regeneration. La tendencia de estos últimos cinco años está dirigida mayormente al estudio de las células madre y pocos de estos estudios se han enfocado en las moléculas de señalización. Se concluyó que las DPSC fueron las más utilizadas, los escasos estudios de andamios utilizaron colágeno, a coágulo sanguíneo, plasma rico en plaquetas y una diversidad de moléculas de señalización donde prevalece el uso de fragmentos de dentina en sus diferentes formas; se utilizó un número similar de estudios
in vivo e
in vitro.
REFERENCIAS (EN ESTE ARTÍCULO)
Marí-Beffa M, Segura-Egea J. Regenerative endodontic procedures: a perspective from stem cell niche biology. Journal of Endodontics. 2017; 43 (1): 52-62.
Shrestha S, Diogenes A, Kishen A. Temporal-controlled release of bovine serum albumin from chitosan nanopeffect on the regulation of alkaline phosphatase activity in stem cells from apical papilla. Journal of Endodontics. 2014; 40 (9): 1349-1354.
Ove P. Translational Opportunities in Stem Cell–based Endodontic Therapy: Where Are We and What Are We Missing? Journal of Endodontics. 2014 April; 40(1): p. s82-s85.
Gronthos S, Mankani M, Brahim J, Gehron P, Shi S. Postnatal human dental pulp stem cells (DPSCs). Proc Natl Acad Sci. 2000; 97 (25): 13625-13630.
Bakopoulou A, About I. Stem cells of dental origin: current research trends and key milestones towards clinical application. Stem Cells International. 2016; 2016 (1): 1-20.
Davies O, Cooper P, Shelton M, Smith A, Scheven B. A comparison of the in vitro mineralisation and dentinogenic potential of mesenchymal stem cells derived from adipose tissue, bone marrow and dental pulp. J Bone Miner Metab. 2015; 33 (4): 371-382.
Janebodin K, Zeng Y, Buranaphatthana W, Ieronimakis M, Reyes M. VEGFR2-dependent angiogenic capacity of pericyte-like dental pulp stem cells. J Dent Res. 2013; 92 (1): 524-535.
Shima H, Matsuzaka K, Kokubu H, Inoue T. Regenerative capability of dental pulp cells after crown fracture. Dental Traumatology. 2012; 29 (1): 29-33.
Kim KW, Yassen , H. The effects of radicular dentine treated with double antibiotic paste and ethylenediaminetetraacetic acid on the attachment and proliferation of dental pulp stem cells. Dental Traumatology. 2015; 31 (1): 374-379.
Lijuan G, Jie L, Xiangchen Q, Mei Y, Wei T, Hang W et al. Comparison of odontogenic differentiation of human dental follicle cells and human dental papilla cells. Plos One. 2013; 8 (4): 1-14.
Zhang J, Zhang Y, Lv H, Yu Q. Human stem cells from the apical papilla response to bacterial lipopolysaccharide exposure and anti-inflammatory effects of nuclear factor I C. Journal of Endodontics. 2013; 39 (11): 1416-1422.
Kushnereva E, Shawcrossb S, Hillarbyc M, JM Y. High-plasticity mesenchymal stem cells isolated from adult-retained primary teeth and autogenous adult tooth pulp. A potential source forregenerative therapies? Archives of Oral Biology. 2016; 62 (1): 43-48.
Zhou Y, Fan W, Xiao Y. The Effect of Hypoxia on the Stemness and Differentiation Capacity of PDLC and DPC. BioMed Research International. 2014; 2014 (1): 1-7.
Hakki S, Kayis A, Hakki E, Bozkurt B, Duruksu G. Coparision of MSCs Isolated from pulp and periodontal ligament. Journal of Periodontology. 2014, p. 1-17.
Dissanayaka W, Zhu L, Hargreaves K, Jin L, Zhang C. Scaffold-free prevascularized microtissue spheroids for pulp regeneration. Journal of Dental Research. 2014; 20 (10): 1-8.
Chen G, Sun Q, Xie L, Jiang Z, Feng L. Comparison of the odontogenic differentiation potential of dental follicle, dental papilla, and cranial neural crest cells. Journal of Endodontics. 2015; 3 (3): 1-9.
Obeid M, Saber S, Ismael A. Mesenchymal stem cells promote hard-tissue repair after direct pulp capping. Journal of endodontics. 2013; 39 (5): 626-631.
Conde M, Chisini A, Demarco F. Stem cell-based pulp tissue engineering: variables enrolled in translation from the bench to the bedside, a systematic review of literature. International Endodontic Journal. 2016; 49 (1): 543-550.
Rodríguez-Benítez S, Stambolsky C, Torres-Lagares D. Pulp revascularization of immature dog teeth with apical periodontitis using triantibiotic paste and platelet-rich plasma: a radiographic study. Journal of Endodontics. 2015; 41 (8): 1299-1304.
Zhang DCX, Bao X, Chen M. Histologic comparison between platelet-rich plasma and blood clot in regenerative endodontic treatment: an animal study. Journal of Endodontics. 2014; 40 (9): 1388-1393.
Furfaro F, Ang E, Lareu R, Murray K, Goonewardene M. A histological and micro-CT investigation in to the effect of NGF and EGF on the periodontal, alveolar bone, root and pulpal healing of replanted molars in a rat model - a pilot study. Progress in Orthodontics. 2014; 15 (2): 1-12.
Gong W, Huang Z, Dong Y, Gan Y. Ionic extraction of a novel nano-sized bioactive glass enhances differentiation and mineralization of human dental pulp cells. Journal of Endodontics. 2014; 40 (1): 83-88.
Srisuwan T, Tilkorn D, Al-Benna S. Revascularization and tissue regeneration of an empty root canal space is enhanced by a direct blood supply and stem cells. Dental Traumatology. 2012; 29 (2): 84-91.