2018, Número 3
<< Anterior Siguiente >>
Dermatología Cosmética, Médica y Quirúrgica 2018; 16 (3)
Inmunología de la alopecia areata. Pérdida del privilegio inmunológico (parte I)
Sánchez ÁI, González HWC, Ponce ORM
Idioma: Español
Referencias bibliográficas: 64
Paginas: 229-236
Archivo PDF: 264.50 Kb.
RESUMEN
El folículo piloso constituye un modelo inmunológico no totalmente
elucidado. Desde los modelos clínicos hasta los avances
moleculares actuales, seguimos sin comprender del todo la maquinaria
inmunológica de este anexo. Las características anatómicas,
la baja o nula expresión del MHC-II y el microambiente
provisto por hormonas, neuropéptidos y citocinas inmunomoduladoras
favorecen este ambiente de privilegio inmunológico
cuya pérdida va más allá del balance entre inmunidad innata
y adquirida. La autorreactividad frente a antígenos propios y
desconocidos, la inducción contra antígenos melánicos, la inhibición
del control inmunitario y el estatus del microbioma intestinal
son novedosas piezas clave de este rompecabezas.
REFERENCIAS (EN ESTE ARTÍCULO)
Pi LQ, Jin XH, Hwang ST y Lee WS, Effects of calcitonin gene-related peptide on the immune privilege of human hair follicles, Neuropeptides 2013; 47:51-7.
Paus R, Ito N, Takigawa M e Ito T, The hair follicle and immune privilege, J Investig Dermatol Symp Proc 2003; 8:188-94.
Lemos M, Díaz C y Moreno L, El inmunoprivilegio del folículo piloso, Med Cutan Iber Lat Am 2014; 42:109-16.
Islam N, Leung P, Huntley A y Gershwin M, The autoimmune basis of alopecia areata, Autoimmun Rev 2015; 14:81-9.
Dainichi T y Kabashima K, Alopecia areata. What’s new in epidemiology, pathogenesis, diagnosis and therapeutic options?, J Dermatol Sci 2016; 86:3-12.
Skogberg G, Jackson S y Astrand A, Mechanisms of tolerance and potential therapeutic interventions in alopecia areata, Pharmacol Ther 2017; 179:102-10.
Hong J, Lee C, Ha SM, Choi SH, Kim TH, Song KH y Kim KH, The contributory roles of Th17 lymphocyte and cytotoxic T lymphocyte at the hair bulge region as well as the hair bulb area in the chronic alopecia areata patients, Ann Dermatol 2017; 29:156-66.
Serrano A, Células colaboradoras (TH1, TH2, TH17) y reguladoras (Treg, TH3, NKT) en la artritis reumatoide, Reumatol Clínica 2009; 5:1-5.
Petukhova L, Duvic M, Hordinsky M et al., Genome-wide association study in alopecia areata implicates both innate and adaptive immunity, Nature 2010; 466:113-7.
ULBP3 UL16 binding protein 3 [Homo sapiens (human)], Gene, NCBI. Disponible en: https://www.ncbi.nlm.nih.gov/gene/79465. Consultado: 21 de julio de 2017.
Islam N, Leung PS, Huntley AC y Gershwin ME, The autoimmune basis of alopecia areata: a comprehensive review, Autoimmun Rev 2015; 14:81-9.
Slavuljica I, Krmpotic´ A y Jonjic´ S, Manipulation of NKG2D ligands by cytomegaloviruses: impact on innate and adaptive immune response, Front Immunol 2011; 28:85.
Xing L, Dai Z, Jabbari A et al., Alopecia areata is driven by cytotoxic T lymphocytes and is reversed by JAK inhibition, Nat Med 2014; 20:1043-49.
Valés M, Browne H y Reyburn H, Expression of the UL16 glycoprotein of human cytomegalovirus protects the virus-infected cell from attack by natural killer cells, BMC Immunol 2003; 4: 4.
Moftah N, El-Barbary R, Rashed L y Said M, ULBP3 a marker for alopecia areata incognita, Arch Dermatol Res 2016; 308:415-21.
Buchbinder E y Hodi S, Cytotoxic T lymphocyte antigen-4 and immune checkpoint blockade, J Clin Invest 2015; 125:3377-83.
Trüeb M y Dias G, Alopecia areata: a comprehensive review of pathogenesis and management, Clin Rev Allergy Immunol 2018; 54:68-87.
John KK, Brockschmidt FF, Redler S et al., Genetic variants in CTLA4 are strongly associated with alopecia areata, J Invest Dermatol 2011; 131:1169-72.
Vega G, Inmunología para el médico general complejo mayor de histocompatibilidad, Rev Fac Med UNAM 2009; 52:86-9.
Slansky J, Antigen-specific T cells: analyses of the needles in the haystack, PLoS Biol 2003; 1:E78.
Paus R, Slominski A y Czarnetzki B, Is alopecia areata an autoimmuneresponse against melanogenesis-related proteins, exposed by abnormal MHC class I expression in the anagen hair bulb?, Yale J Biol Med 1993; 66:541-54.
Ito T, Ito N, Bettermann A, Tokura Y, Takigawa M y Paus R, Collapse and restoration of MHC class-I-dependent immune privilege: exploiting the human hair follicle as a model, Am J Pathol 2004; 164: 623-34.
Ito T, Ito N, Saathoff M, Bettermann A, Takigawa M y Paus R, Interferon gamma is a potent inducer of catagen-like changes in cultured human anagen hair follicles, Br J Dermatol 2005; 152:623-31.
Paus R, Ito N, Takigawa M e Ito T, The hair follicle and immune privilege, J Invest Dermatol 2003; 8:188-94.
Santos Z, Avci P y Hamblin M, Drug discovery for alopecia: gone today, hair tomorrow, Expert Opin Drug Discov 2015; 10:269-92.
Moseley RP, Brown JI, Auld J et al., An immunocytochemical study of MHC class I expression on human Langerhans cells and melanocytes, J Pathol 1997; 181:419-25.
Oelert T, Gilhar A y Paus R, T-cell “induced-self” MHC class I/peptide complexes may enable “de novo” tolerance induction to neo-antigens occurring outside of the thymus: lessons from the hair follicle, Exp Dermatol 2017; 26:529-31.
Díaz D, Prieto A, Úbeda Cantera M y Álvarez-Mon Soto M, Linfocitos T, Med Programa Form Médica Contin Acreditado 2013; 11:1699-1709.
Nagai H, Oniki S, Oka M, Horikawa T y Nishigori C, Induction of cellular immunity against hair follicle melanocyte causes alopecia, Arch Dermatol Res 2006; 298:131-4.
González J, Duque V y Velásquez M, Foxp3: vontrolador maestro de la generación y función de las células reguladoras naturales, Inmunología 2010; 29:74-84
Zhang Y, Zhang Y, Gu W, He L y Sun B, Th1/Th2 cell’s function in immune system, en Sun B (ed.), T helper cell differentiation and their function. advances in experimental medicine and biology, Dordrecht, Springer, 2014, pp. 45-65.
Chikh A, Sayan E, Thibaut S et al., Expression of GATA-3 in epidermis and hair follicle: relationship to p63, Biochem Biophys Res Commun 2007; 361:1-6.
Sepúlveda C y Puente J, Células natural killer y el sistema inmune innato en la patología infecciosa, Rev Med Chile 2000; 128:1361-70.
Guttman-Yassky E, Ungar B, Noda S et al., Extensive alopecia areata is reversed by IL-12/IL-23p40 cytokine antagonism, J Allergy Clin Immunol 2016; 137:301-4.
Ito T, Ito N, Saatoff M et al., Maintenance of hair follicle immune privilege is linked to prevention of NK cell attack, J Invest Dermatol 2008; 128:1196-206.
Alfaro C, Oñate C, Rodríguez A, Pérez-Gracia J et al., Células dendríticas especializadas en presentación de antígenos exógenos a linfocitos T citotóxicos, Anales Sis San Navarra 2013; 36:519-37.
Saadeh D, Kurban M y Abbas O, Update on the role of plasmacytoid dendritic cells in inflammatory/autoimmune skin diseases, Exp Dermatol 2016; 25:415-21.
Abou Rahal J, Kurban M, Kibbi G y Abbas O, Plasmacytoid dendritic cells in alopecia areata: missing link?, J Eur Acad Dermatol Venereol 2016; 30:119-23.
Ramiro E, Pérez J, Castellote C, Franch A y Castell M, El intestino: pieza clave del sistema inmunitario, Rev Esp Enferm Dig 2008; 100:29-34.
Fasano A, Leaky gut and autoimmune diseases, Clin Rev Allergy Immunol 2012; 42:71-8.
Bertolini M, Pretzlaff M, Sulk M et al., Vasoactive intestinal peptide, whose receptor-mediated signalling may be defective in alopecia areata, provides protection from hair follicle immune privilege collapse, Br J Dermatol 2016; 175:531-41.
Oliveira S, Gomides A, Henrique L, Bezerra Luna C y Castro F, Intestinal parasites infection: protective effect in rheumatoid arthritis?, Rev Bras Reumatol Engl Ed 2017; 57:461-5.
Ostrov E y Amsterdam D, Immunomodulatory interplay of the microbiome and therapy of rheumatic diseases, Immunol Invest 2017; 46:769-92.
Rebello D, Wang E, Yen E, Lio A y Kelly R, Hair growth in two alopecia patients after fecal microbiota transplant, ACG Case Rep J 2017; 4:e107.
Paus R, Langan A, Vidali S, Ramot Y y Andersen B, Neuroendocrinology of the hair follicle: principles and clinical perspectives, Trends Mol Med 2014; 20:559-70.
Lee S, Pi Q, Park L, Whang U, Jeon Y y Lee S, The effect of proopiomelanocortin- derived peptides on the immune system of human hair follicles, J Dermatol Sci 2009; 55:195-7.
Ferone D, Van Hagen PM, Semino C et al., Somatostatin receptor distribution and function in immune system, Dig Liver Dis 2004; 36:68-77.
Zavros Y, Kao Y y Merchant L, Inflammation and cancer III. Somatostatin and the innate immune system, Am J Physiol Gastrointest Liver Physiol 2004; 286:698-701.
Breitkopf T, Lo BK, Leung G et al., Somatostatin expression in human hair follicles and its potential role in immune privilege, J Invest Dermatol 2013; 133:1722-30.
Samuelov L, Kinori M, Bertolini M y Paus R, Neural controls of human hair growth: calcitonin gene-related peptide (CGRP) induces catagen, J Dermatol Sci 2012; 67:153-5.
Paus R, Arck P y Tiede S, (Neuro)endocrinology of epithelial hair follicle stem cells, Mol Cell Endocrinol 2008; 288:38-51.
Simental F y Ponce R, Neuropéptidos en dermatología, Dermatol Rev Mex 2006; 50:206-17.
Valero M y Hawkins F, Metabolismo, fuentes endógenas y exógenas de vitamina D, Rev Esp Enferm Metab Oseas 2007; 16:63-70.
Bikle D, Vitamin D metabolism and function in the skin, Mol Cell Endocrinol 2011; 347:80-9.
Akar A, Orkunoglu E, Tunca M, Tas‚tan B y Kurumlu Z, Vitamin D receptor gene polymorphisms are not associated with alopecia areata, Int J Dermatol 2007; 46:927-9.
Kechichian E y Ezzedine K, Vitamin D and the skin: an update for dermatologists, Am J Clin Dermatol 2018; 19:223-35.
Erpolat S, Sarifakioglu E y Ayyildiz A, 25-hydroxyvitamin D status in patients with alopecia areata, Postepy Dermatol Alergol 2017; 34:248-52.
Prietl B, Treiber G y Pieber R, Amrein K. Vitamin D and immune function, Nutrients 2013; 5:2502-21.
Esebanmen E y Langridge R, The role of TGF-beta signaling in dendritic cell tolerance, Immunol Res 2017; 65:987-94.
Jelinek T, Mihalyova J, Kascak M, Duras J y Hajek R, PD-1/PD-L1 inhibitors in haematological malignancies: update 2017, Immunology 2017; 152:357-71.
Ito T, Immune checkpoint inhibitor-associated alopecia areata, Br J Dermatol 2017; 176:1444-5.
Zarbo A, Belum VR, Sibaud V et al., Immune-related alopecia (areata and universalis) in cancer patients receiving immune checkpoint inhibitors, Br J Dermatol 2017; 176:1649-52.
Rivera N, Boada A, Bielsa MI et al., Hair repigmentation during immunotherapy treatment with an anti-programmed cell death 1 and antiprogrammed cell death ligand 1 agent for lung cancer, JAMA Dermatol 2017; 153:1162-5.
Collin C, Gautier B, Gaillard O et al., Protective effects of taurine on human hair follicle grown in vitro, Int J Cosmet Sci 2006; 28:289-98.