2018, Número 3
<< Anterior Siguiente >>
Rev Fac Med UNAM 2018; 61 (3)
¿Es la patogenia del virus sincitial respiratorio humano un factor de riesgo para el desarrollo de asma infantil?
García CA, Tirado MR, Ambrosio JR
Idioma: Español
Referencias bibliográficas: 47
Paginas: 17-30
Archivo PDF: 313.60 Kb.
RESUMEN
El virus sincitial respiratorio humano (VSRh) es considerado
como el principal agente causal de infecciones del tracto
respiratorio en niños. Su presentación clínica varía en cuanto
a la gravedad: desde infecciones no complicadas de la vía
aérea superior en adultos y niños sanos, hasta bronquiolitis
y bronconeumonía en niños con factores de riesgo y menores
de 2 años. Perteneciente a la familia
Pneumoviridae y al
género
Orthopneumovirus, el VSRh es un virus envuelto que
contiene un genoma de ácido ribonucleico (RNA) monocatenario
de polaridad negativa, que codifica para 7 proteínas
estructurales (G, F, SH, M, P, N y L) y 4 no estructurales (NS1,
NS2, M1, M2). La presencia del virus se ha considerado como
factor de riesgo para el desarrollo de asma infantil, que es una
enfermedad inflamatoria de la vía aérea caracterizada por episodios
recurrentes de obstrucción de la vía aérea inferior ante
estímulos ambientales generalmente inocuos. El riesgo de
desarrollar asma aumenta si la primoinfección sucede a edad
temprana y si hay factores de riesgo como prematuridad y
broncodisplasia pulmonar. En México, debido a la morbilidad
y mortalidad asociada al VSRh, y como profilaxis en pacientes
de alto riesgo; desde el año 2008, se recomienda el uso del
biofármaco pavilizumab. El objetivo de la presente revisión
es describir los factores asociados a la patogénesis VSRh que
podrían estar implicados en el desarrollo del asma infantil y,
con ello, plantear que población está en riesgo. Para estos
fines, se presenta un breve análisis de la biología del virus,
la respuesta inmune que se induce durante la infección, así
como aquellos fármacos aprobados en México para el tratamiento
y profilaxis de infecciones asociadas al VRSh.
REFERENCIAS (EN ESTE ARTÍCULO)
Young S, Le Souëf PN, Geelhoed GC, Stick SM, Turner KJ, Landau LI. The influence of a family history of asthma and parental smoking on airway responsiveness in early infancy. N Engl J Med. 1991;324:1168-73.
Hernández D, Zárate K, Tirado R, et al. Estudio piloto de infecciones respiratorias agudas en coinfecciones virles (VSRh, MPVh) y su impacto en las manifestaciones clínicas, diagnósticas y epidemiológicas. Contacto Químico. 2016;16(14):7-13.
Sly PD, Hibbert ME. Childhood asthma following hospitalization with acute viral bronchiolitis in infancy. Pediatr Pulmonol. 1989;7:153-8.
Gorski S, Hufford M, Braciale T. Recent insights into pulmonary repair following virus-induced inflammation of the respiratory tract. Curr Op Virol. 2012;2(3):33-241.
Holgate ST, Wenzel S, Postma DS, Weiss ST, Renz H, Sly PD. Asthma. Nat Rev Primers. Nat Rev Dis Primers. 2015;1:15025. doi: 10.1038/nrdp.2015.25.
Pullan C, Hey E. Wheezing, asthma and pulmonary dysfunction 10 years after infection with respiratory syncytial virus in infancy. British Med J. 1982;284:1665-9.
Neeman Kari, Alison Freifeld. Respiratoy syncytial virus in hematopoietic stem cells transplantation and solid-organ transplantation. Curr Infec. 2015;17:1-38.
Lo MS, Brazas RM, Holtzman MJ. Respiratory Syncytial Virus Nonstructural Proteins NS1 and NS2 mediate inhibition of Stat2 expression and Alpha/Beta interferon responsiveness. Virol J. 2005;79(14):9315-9.
Spann K, Tran K, Collins P. Effects of nonstructural proteins NS1 and NS2 of Human Respiratory Syncytial virus on interferon regulatory factor 3, NF-қß, and proinflammatory cytokines. Virol J. 2005;79(9):5353-62.
Malhotra R, Ward M, Bright H, Priest R, Foster MR, Hurle M, et al. Isolation and characterisation of potential respiratory syncytial virus receptors on epithelial cells. Microbes Infect 2003;5:123-33.
Tayyari F, Marchant D, Moraes TJ, Duan W, Mastrangelo P, Hegele RG. Identification of nucleolin as a cellular receptor for human respiratory syncytial virus. Nat Med. 2011;7:1132-5.
Masante C, El Najjar F, Chang A, Jones A, Moncman CL, Dutch RE. The human metapneumovirus small hydrophobic protein has properties consistent with those of a viroporin and can modulate viral fusogenic activity. J Virol. 2014;88(11):6423-33.
Shahriari S, Gordon J, Ghildyal R. Host cytoskeleton in respiratory syncytial virus assembly and budding. Virol J. 2016;13(1):161.
Farrag M, Almajhdi F. Human respiratory sincitial virus: role of innate immunity in clearance and disease progression. Viral Immunol. 2015;29:11-26.
Respiratory Syncytial Virus Activity-United States, July 2011–January 2013;62(08):141-4. Disponible en: https:// www.cdc.gov/mmwr/preview/mmwrhtml/mm6208a1.htm
Brinkmann V, Reichard U, Goosmann C, Fauler B, Uhlemann Y, Weiss DS, et al. Neutrophil extracellular traps kill bacteria. Science. 2004;303:1532-5.
Peiró T, Patel DF, Akthar S, Gregory LG, Pyle CJ, Harker JA, et al. Neutrophils drive alveolar macrophage IL-1β release during respiratory viral infection. Thorax. 2017;1-11. pii: thoraxjnl-2017-210010. doi: 10.1136/thoraxjnl-2017-210010.
Russel C, Unger S, Walton M. The human immune response to respiratory syncytial virus infection. Clin Microbiol Rev. 2017;30(2):481-502.
Ayukawa H, Matsubara T, Kaneko M, Hasegawa M, Ichiyama T, Furu- kawa S. Expression of CTLA-4 (CD152) in peripheral blood T cells of children with influenza virus infection including encephalopathy in comparison with respiratory syncytial virus infection. Clin Exp Immunol. 2004;137:151-5.
Secretaría de Salud. Información Epidemiológica. Disponible en: https://www.gob.mx/salud/acciones-y-programas/ informacion-epidemiologica
Schneider P. The role of April and BAFF in lymphocyte activation. Curr Op Immunol. 2005;17:282-9.
Shamas A, Kale J, Leber B, Andrews D. Mechanisms of Action of Bcl-2 Family Proteins. Cold Spring Harbor Perspectives Biology. 2013;5:1-21.
Mendoza-Noguez A, Alcázar-González G, Briones-Torres C. Prevalencia de virus respiratorios utilizando la reacción en cadena de la polimerasa (PCR) en tiempo real: experiencia en el laboratorio de patología clínica, médica sur. Investigación Médica Sur. 2014;21(3):124-7.
Wong-Chew RM, Farfán-Quiroz R, Sánchez-Huerta JL, Nava-Frías M, Casasola-Flores J, Santos-Preciado JI. Frecuencia de virus respiratorios y características clínicas de niños que acuden a un hospital en México. Salud Pública. 2010;52(6):228-532.
Guía de Práctica Clínica de Diagnóstico y Tratamiento de Bronquiolitis Aguda en Niñas/Niños y en el Primer Nivel de Atención México, Instituto Mexicano del Seguro Social; Secretaría de Salud; 1 de diciembre del 2015.
FDA. Center for Drug Evaluation and Research. [Consultado: 21 noviembre 2017]. Disponible en: https://www.accessdata. fda.gov/drugsatfda_docs/bla/2003/103770Orig1s5033.pdf
Sommer C, Resch B, Simões EA. Risk factors for severe respiratory syncytial virus lower respiratory tract infection. Open Microbiol J. 2011;5:144-54. doi: 10.2174/ 1874285801105010144.
American Academy of Pediatrics. Update guidance for palivizumab prophylaxis among infants and Young children at increased risk of hospitalization for respiratory syncytial virus infection. 2017;134:1-21.
Guía de Práctica Clínica, Prevención de la Infección por Virus Sincitial Respiratorio en Población de Riesgo, Secretaría de Salud. 2009:1-32.
Reach B. Product review on the monoclonal antibody palivizumab for prevention of respiratory syncytial virus infection. Hum Vaccin Immunother. 2017;13(9):2138-49. doi: 10.1080/21645515.2017.1337614
Groothuis JR, Simoes EA, Levin MJ, Hall CB, Long CE, Rodriguez WJ, et al. Prophylactic administration of respiratory syncytial virus immune globulin to high-risk infants and young children. The Respiratory Syncytial Virus Immune Globulin Study Group. N Engl J Med. 1993;329(21):1524-30.
Junyan Han, Yi Jia, Katsuyuki Takeda, Yoshiki Shiraishi, Masakazu Okamoto, Azzeddine Dakhama, et al. Montelukast during primary infection prevents airway hyperresponsiveness and inflammation after reinfection with respiratory syncytial virus. Am J Respir Crit Care Med. 2010;182(4): 55-63. doi: 10.1164/rccm.200912-1811OC
Liu F, Ouyang J, Sharma AN, Liu S, Yang B, Xiong W, Xu R. Leukotriene inhibitors for bronchiolitis in infants and young children. Cochrane Database of Systematic Reviews. 2015;3:1-40.
Prapphal N, Hantragool S, et al, Efficacy of Montelukast on Treatment of wheezing lower respiratory tract infection in young children with risk of asthma. Pediatr Res. 2011; 70:546-546.
American Academy of Pediatrics. Clinical practice guideline: thee diagnosis, management, and prevention of bronchiolitis. [Consultado: 21 nov 2017]. Disponible en:
http://pediatrics.aappublications.org/content/pediatrics/ early/2014/10/21/peds.2014-2742.full.pdf
Turner TL, Kopp BT, Paul G, Landgrave LC, Hayes D Jr, Tompson R. Respiratory Syncytial virus: Current and emerging treatment options. Clinicoecon Outcomes Res. 2014 Apr 25;6:217-25. doi: 10.2147/CEOR.S60710. eCollection 2014.
Lambrecth B, Hammad H.The Immunology of Asthma. Nat Immunol. 2015;16(1):45-56.
Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention, 2017. [Consultado: 21 nov 2017]. Disponible en http://ginasthma.org/2017-gina-report-global- strategy-for-asthma-management-and-prevention/
Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med. 2009;15:410-6.
Kumar RK, Foster PS, Rosenberg HF. Respiratory viral infection, epithelial cytokines, and innate lymphoid cells in asthma exacerbations. J Leukoc Biol. 2014;96(3):391-6.
Wu P, Hartert T. Evidence for a causal relationship between respiratory syncytial virus infection and asthma. Expert Rev Anti Infecter. 2011;9(9):731-45.
Nuolivirta K, Törmämen S, Teräsjärvi J, Vuononvirta J, Koponen P, Korppi M, et al. Post-bronchiolitis wheezing is associated with toll-like receptor 9 rs187084 gene polymorphism. Sci Rep. 2016;6:1-9. doi: 10.1038/srep31165
Krishnamoorthy N, Khare A, Oriss TB, Raundhal M, Morse C, Yarlagadda M, et al. Early infection with respiratory syncytial virus impairs regulatory T cell function and increases susceptibility to allergic asthma. Nat Med. 2012;18(10):1-16.
Hammad H, Chieppa M, Perros F, Willart MA, Germain RN, Lambrecht BN. House dust mite allergen induces asthma via Toll-like receptor 4 triggering of airway structural cells. Nat Med. 2015;10(5):1-19.
Gomez RS, Guisle-Marsollier I, Bohmwald K, Bueno SM, Kalergis AM. Respiratory Syncytial Virus: pathology, therapeutic drugs and prophylaxis. Immunol Lett. 2014; 162:237-47.
Tortorolo L, Langer A, Polidori G, Vento G, Stampachiacchere B, Aloe L, Piedimonte G. Neurotrophin overexpression in lower airways of infants with respiratory syncytial virus infection. Am J Respir Crit Care Med. 2005;172:233-7.