2018, Número 2
<< Anterior Siguiente >>
Gac Med Mex 2018; 154 (2)
Complejos moleculares de la señalización adrenérgica
Alcántara-Hernández R, Hernández-Méndez A
Idioma: Español
Referencias bibliográficas: 69
Paginas: 223-235
Archivo PDF: 417.19 Kb.
RESUMEN
La adrenalina y la noradrenalina se unen a receptores membranales de la superfamilia de receptores acoplados a proteínas
G (GPCR) en las células blanco, donde modulan respuestas fisiológicas tales como el metabolismo, vasoconstricción, vasodilatación
y proliferación. La alteración en su función está asociada con hipertensión, hiperplasia prostática benigna e hipertrofia
cardiaca. En respuesta a la adrenalina, los receptores forman complejos de señalización, lo que permite que la acción
adrenérgica sea específica, rápida y eficiente. Estos complejos de señalización o signalosomas están integrados por cinasas,
fosfatasas, proteínas adaptadoras y de andamio, que en conjunto modulan la función del receptor. La manipulación de cada
interacción proteína-proteína del complejo de señalización adrenérgico emerge como una estrategia terapéutica prometedora
para el diseño de fármacos que modulen la acción adrenérgica y ayuden a definir su significado fisiopatológico. Un modelo
biológico importante para realizar estos estudios es el corazón, ya que expresa todos los receptores adrenérgicos; en la actualidad
se han descrito varios signalosomas cardiacos. La espectrometría de masas (proteómica), manipulación genética y
ensayos bioquímicos como el doble híbrido o la coinmunoprecipitación son herramientas que se emplean en estos estudios.
REFERENCIAS (EN ESTE ARTÍCULO)
Lymperopoulos A, Brill A, McCrink KA. GPCRs of adrenal chromaffin cells and catecholamines: The plot thickens. Int J Biochem Cell Biol. 2016;77(Pt B):213-219.
Cotecchia S. The α1-edrenergic receptors diversity of signaling networks and regulation. J Recept Signal Transduct Res. 2010;30(6):410-419.
Forster C. Agonistas de los adrenorreceptores. En: Kalant H, Roschlau WHE (eds.). Principios de farmacología médica. México: Oxford; 2003.
Forster C. Antagonistas de los adrenorreceptores. En: Kalant H, Roschlau WHE, editores. Principios de farmacología médica. México: Oxford; 2003.
Mitchell J. Transducción de señales y segundos mensajeros. En: Kalant H, Roschlau WHE, editores. Principios de farmacología médica. México: Oxford; 2003.
Mycek MJ, Harvey RA, Champe PC. Agonistas adrenérgicos. En: Harvey RA, Champe PC, editors. Farmacología. México: McGrawHill; 2007.
Mycek MJ, Harvey RA, Champe PC. Antagonistas adrenérgicos. En: Harvey RA, Champe PC, editores. Farmacología. México: McGrawHill; 2007.
García-Sáinz JA. Hormonas: mensajeros químicos y comunicación celular. México: Fondo de Cultura Económica; 2016.
Carniegie KM, Means CK, Scott JD. A-kinase anchoring proteins: from protein complexes to physiology and disease. IUBMB Life. 2009; 61(4):394-406.
Dombrádi V, Krieglstein J, Klumpp S. Regulating the regulators. EMBO Rep. 2002;3(2):120-124.
Groves JT, Kuriyan J. Molecular mechanisms in signal transduction at the membrane. Nat Struct Mol Biol. 2010;17(6):659-665.
Bauman AL, Michel JJ, Henson E, Dodge-Kafka KL, Kapiloff MS. The mAKAP signalosome and cardiac myocyte hypertrophy. IUBMB Life. 2007;59(3):163-169.
Pawson CT, Scott JD. Signal interaction through blending, bolstering and bifurcating of intracellular information. Nat Struct Mol Biol. 2010;17(6):653-658.
Cotecchia S, Stanasila L, Diviani D. Protein-protein interaction at adrenergic receptors. Curr Drug Targets. 2012;13(1):15-27.
Diviani D, Reggi E, Arambasic C, Caso S, Maric D. Emerging roles of A-kinase anchoring proteins in cardiovascular pathophysiology. Biochim Biophys Acta. 2016;18637(7 Pt B):1926-1936.
Malbon CC, Tao J, Wang HY. AKAPs (A-kinase anchoring proteins) and molecules that composes their G-protein-coupled receptor signaling complexes. Biochem J. 2004;379(Pt 1):1-9.
Logue JS, Scott JD. Organizing signal transduction through A-kinase Anchoring proteins (AKAPs). 2010;277(21):4370-4375.
Vázquez-Prado J, Casas-González P, García-Sáinz JA. G protein-coupled receptor cross-talk: pivotal roles of protein phosphorylation and protein-protein interactions. Cell Signal. 2003;15(6) 549-557.
Tao J, Shumay E, McLaughlin S, Wang HY, Malbon CC. Regulation of AKAP-membrane interactions by calcium. J Biol Chem. 2006;281(33):23932-23944.
Perino A, Ghigo A, Scott JD, Hirsch E. Anchoring proteins as regulators of signaling pathways. Circ Res. 2012;111(4):482-492.
Fu Y, Westenbroek RE, Yu FH, Clark JP, Marshall MR, Scheuer T, et al. Deletion of the distal C terminus of Cav1.2 channels leads to loss of b-adrenergic regulation and heart failure in vivo. J Biol Chem. 2011;286(14):12617-12626.
Redden JM, Dodge-Kafka KL. AKAP phosphatases complexes in the heart. J Cardiovasc Pharmacol. 2011;58(4):354-362.
Shi T, Papay RS, Pérez DM. α1A-adrenergic receptor prevents cardiac ischemic damage through PKC/GLUT1/4-mediated glucose uptake. J Recept Signal Transduct Res. 2016;36(3):261-270.
Östman-Smith I. Beta-blockers in pediatric hypertrophic cardiomyopathies. Rev Recent Clin Trials. 2014;9(2):82-85.
Hamada M, lkeda S, Shigematsu Y. Advances in medical treatment of hypertrophic cardiomyopathy. J Cardiol. 2014;64(1):1-10.
DeFilipps EM, Givertz MM. Treating diabetes in pacients with heart failure: moving from risk to benefit. Curr Heart Fail Rep. 2016;13(3):111-118.
Hinson JT, Chopra A, Nafissi N, Polacheck WJ, Benson CC, Swist S, et al. Titin mutations in iPS cells define sarcomere insufficiency as a cause of dilated cardiomyopathy. Science. 2015;349(6251):982-986.
Ahlquist RP. A study of adrenotropic receptors. Am J Physiol. 1948;153(3):586-600.
Sutherland EW, Rall TW. Fractionation and characterization of a cyclic adenine ribonucleotide formed by tissue particles. J Biol Chem. 1958;232(2):1077-1091.
Galitzky J, Vermorel M, Lafontan M, Mantastruc P, Berlan M. Termogenetic and lipolytic effect of yohimbine in the dog. Br J Pharmacol. 1991; 104(2):514-518.
Alcántara-Hernández R, Casas-González P, García-Sáinz JA. Signal transduction pathway cross-talk. Role of protein kinases, protein phosphatases and reactive oxygen species. Curr Trends Endocrinol. 2005;1:19-30.
García-Sáinz JA. Robert Lefkowitz y Brian Kobilka: premios Nobel 2012. Rev Fac Med UNAM. 2013;56(1) 59-63.
Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, et. al. Crystal structure of the human b2 adrenergic G-protein- coupled receptor. Nature. 2007;450(7168):383-388.
Rasmussen SG, DeVree BT, Zou Y, Kuse AC, Chung KY, Kobilka TS, et al. Crystal structure of the b2 adrenergic receptor-Gs protein complex. Nature. 2011;477(7366):549-555.
Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, et al. Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature. 2012;482(7386):552-556.
Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weiss WI, Kobilka BK. Structure of the d-opioid receptor bound to naltrindole. Nature. 2012;485(7398):400-404.
Okada T, Le Trong I, Fox BA, Behnke CA, Stenkamp RE, Palczewski K. X-Ray diffraction analysis of the three-dimensional crystals of bovine rhodopsin obtained from mixed micelles. J Struct Biol. 2000; 130(1):73-80.
Pawson CT, Scott JD. Signal integration blending, bolstering and bifurcating of intracellular information. Nat Struct Mol Biol. 2010;17(6) 653-658
Welch JEJ, Jones BW, Scott JD. Networking with AKAPs: context-dependent regulation of anchored enzymes. Mol Interv. 2010;10(2):86-97.
Zentella-Dehesa A, Alcántara-Hernández R. Importancia de los dominios de interacción proteica en la formación de complejos en los sistemas de transducción. Rev Educ Bioq. 2003;22(3):117-129.
Huber T, Sakmar TP. Escaping the flatlands: new approaches to study dynamic assembly and activation of GPCRs signaling complexes. Trends Pharmacol Sci. 2011;32(7):410-419.
Pawson T. New impressions of Src and Hck. Nature. 1997;385(6617):582-609.
Roskoski R. Src protein-tyrosine kinase structure and regulation. Biochem Biophys Res Commun. 2004;324(4):1155-1164.
Foster-Barber A, Bishop JM. Src interact with dynamin and synapsin in neuronal cells. Proc Natl Acad Sci U S A. 1998;95(8):4673-4677.
Ponting CP, Phillips Ch, Davies KE, Blake DJ. PDZ domains: targeting signaling molecules to sub-membranous sites. Bioessays. 1997;19(6):469-479.
Tao J, Wang H-yu, Malbon CC. Protein kinase A regulates AKAP250 (gravin) scaffold binding to the b2-adrenergic receptor. EMBO J. 2003;22(24):6419-6429.
Lin F, Wang HY, Malbon CC. Gravin-mediated formation of signaling complexes in beta 2-adrenergic receptor desensitization and resensitization. J Biol Chem. 2000;275(25):19025-19034.
García-Sáinz JA, Romero-Ávila T, Alcántara-Hernández R. Mechanisms involved in α1B-adrenoceptor desensitization. IUBMB Life. 2011; 63(10):811-815.
Tao J, Wang HY, Malbon CC. Src docks to A-kinase anchoring protein gravin, regulating beta2-adrenergic receptor resensitization and recycling. J Biol Chem. 2007;282(9):6597-6608.
Willoughby D, Wong W, Shaack J, Scott JD, Cooper DM. An anchored PKA and PDE4 complex regulates subplasmalemmal cAMP dynamics. EMBO J. 2006;25(10):2051-2061.
Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG. The interaction of beta-arrestin with AP-2 adaptor is required for the clustering of beta2- adrenergic receptor into clathrin-coated pits. J Biol Chem. 2000;275(30):23120-23126.
Azzi M, Charest PG, Rousseau G, Kohout T, Bouvier M, Piñeyro G, et al. b-arrestin-mediated activation of MAPK by inverse agonists revels distinct active conformations for G protein-coupled receptors. Proc Natl Acad Sci U S A. 2003;100(20):11406-11411.
Shenoy SK, Xiao K, Weissman AM, Venkataramanan V, Snyder PM, Freedman NJ. Nedd4 mediates agonist-dependent ubiquitination, lysosomal targeting, and degradation of the b2-adrenergic receptor. J Biol Chem. 2008;283(32):22166-22176.
Wnorowski A, Jozwiak K. Homo- and hetero-oligomerization of b2-adrenergic receptor in receptor trafficking, signaling pathways and receptor pharmacology. Cell Signal. 2014;26(10):2259-2265.
Salahpour A, Angers S, Mercier JF, Lagacé M, Marullo S, Bouvier M. Homodimerization of the beta2-adrenergic receptor as a prerequisite for cell surface targeting. J Biol Chem. 2004;279(32):33390-33397.
Tam J, Trembovier V, DiMarzo V, Petrosino S, Leo G, Alexandrovich A, et. al. The cannabinoid CB1 receptor regulates bone formation by modulating adrenergic signaling. FASEB J. 2008;22(1):285-294.
Hudson BD, Hébert TE, Kelly ME. Physical and functional interaction between CB1 cannabinoid receptors and beta2-adrenoceptors. Br J Pharmacol. 2010;160(3) 627-642.
Prasanna X, Chattopadhvay A, Sengupta D. Cholesterol modulates the dimer interface of the b2-adrenergic receptor via colesterol occupancy sites. Biophys J. 2014;106(6):1290-1300.
Shukla AK, Westfield GH, Xiao K, Reis RI, Huang LY, Shukla PT, et. al. Visualization of arrestin recruitment by a G protein-coupled receptor. Nature. 2014;512(7513):218-222.
Luttrell LM, Lefkowitz RJ. The role of b-arrestins in the termination and transduction of G-protein-coupled receptor signals. J Cell Sci. 2002;115(Pt 3):455-465.
Nelson CD, Kovacs JJ, Nobles KN, Whalen EJ, Lefkowitz RJ. Beta-arrestin scaffolding of phosphoinositol 4-phsphate 5-kinase Ialpha promotes agonist-stimulated sequestration of the b2-adrenergic receptor. J Biol Chem. 2008;283(30):21093-21101.
Nobles KN, Xiao K, Ahn S, Shukla AK, Lam ChM, Rajagopal S, et. al. Distinct phosphorylation sites on the b2-adrenergic receptor establish a barcode that encodes differential functions of b-arrestin. Sci Signal. 2011;4(185):ra51.
Shenoy SK, Lefkowitz RJ. b-arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci. 2011;32(9):521-533.
Tao J, Malbon CC. G-protein-coupled receptor-associated A-kinase anchoring proteins AKAP5 and AKAP12: differential signaling to MAPK and GPCR recycling. J Mol Signal. 2008;3:19.
Gao S, Wang HY, Malbon CC. AKAP12 and AKAP5 form higher-order hetero-oligomers. J Mol Signal. 2011;6:8.
Vanotis G, Del-Duca D, Trieu P, Rohlicek CV, Hébert TE, Allen BG. Nuclear b-adrenergic receptors modulate gene expression in adult rat heart. Cell Signal. 2011;23(1):89-98.
Wright CD, Chen Q, Baye NL, Huang Y, Healy CL, Kasinathan S, et al. Nuclear α1-adrenergic receptors signal activated ERK localization to caveolae in adult cardiac myocytes. Circ Res. 2008;103(9):992-1000.
Lyssand JS, Whiting JL, Lee K-S, Kastl R, Wacker JL, Bruchas MR, Miyatake M, Langeberg LK, Chavkin Ch, Scott JD, Gardner RG, Adams ME, Hague Ch. α-dystrobrevin-1 recruits α-catulin to the α1D adrenergic receptor/dystrophin-associated protein complex signalosome. Proc Natl Acad Sci U S A. 2010;107(50):21854-21859.
De-La-Torre Russis V, Valles A, Gómez R, Chinea G, Pons T. Interacciones proteína-proteína: bases de datos y métodos teóricos de predicción. Biotecnología Aplicada. 2003;20(3):201-208.