2018, Número 2
Cepas E-ESKAPE multidrogorresistentes aisladas en hemocultivos de pacientes con cáncer
Idioma: Español
Referencias bibliográficas: 19
Paginas: 151-157
Archivo PDF: 587.83 Kb.
RESUMEN
Objetivo. Describir la tendencia de cepas multidrogorresistentes (MDR) aisladas en hemocultivos de pacientes con cáncer durante el periodo de 2005 a 2015. Material y métodos. Análisis retrospectivo en el que se procesaron 33 127 hemocultivos. La identificación y la sensibilidad antimicrobianas se realizaron a través de métodos automatizados WaLK away (Siemens Laboratory Diagnostics) y BD Phoenix (Becton, Dickinson and Company). Se determinaron cepas resistentes de acuerdo con la concentración mínima inhibitoria, según los parámetros del Clinical and Laboratory Standards Institute (CLSI). Resultados. 5 604 (16.9%) aislamientos fueron positivos, con 6 397 aislamientos, 3 732 (58.4%) bacilos gramnegativos, 2 355 (36.9%) cocos grampositivos, 179 (2.7%) levaduras y 126 (1.9%) bacilos grampositivos. Escherichia coli (n=1 591, 24.5%) fue la bacteria más frecuente, 652 (41%) productoras de beta-lactamasas de espectro-extendido (BLEE); Enterococcus faecium 143 (2.1%), 45 (31.5%) resistente a vancomicina; Staphylococcus aureus 571 (8.7%), 121 (21.2%) resistentes a meticilina (SARM); Klebsiella pneumoniae 367 (5.6%), 41 (11.2%) BLEE, Acinetobacter baumannii 96 (1.4%), 23 (24%) MDR; Pseudomonas aeruginosa 384 (5.6%), 43 (11.2%) MDR. Las cepas MDR se aislaron más frecuentemente en pacientes con neoplasias hematológicas en comparación con tumores sólidos; SARM (RM=4.48, IC95% 2.9-6.8); E. coli BLEE (RM=1.3, IC95% 1.10-1.65) y A. baumannii-MDR (RM=3.2, IC95% 1.2-8.3). Conclusiones. Se observó un aislamiento significativamente mayor de cepas E-ESKAPE MDR en pacientes con neoplasias hematológicas.REFERENCIAS (EN ESTE ARTÍCULO)
Cornejo-Juárez P, Pérez-Jiménez C, Silva-Sánchez J, Velázquez-Acosta C, González-Lara F, Reyna-Flores F, et al. Molecular analysis and risk factors for Escherichia coli producing extended-spectrum β-lactamase bloodstream infection in hematological malignancies. PLoS One. 2012;7(4):e35780. https://doi.org/10.1371/journal.pone.0035780
Metzger KE, Rucker Y, Callaghan M, Churchill M, Jovanovic BD, Zembower TR, et al. The burden of mucosal barrier injury laboratoryconfirmed bloodstream infection among hematology, oncology, and stem cell transplant patients. Infect Control Hosp Epidemiol. 2015;36(2):119-24. https://doi.org/10.1017/ice.2014.38
Cornejo-Juárez P, Vilar-Compte D, García-Horton A, López- Velázquez M, Ñamendys-Silva S, Volkow-Fernández P. Hospital-acquired infections at an oncological intensive care cancer unit: differences between solid and hematological cancer patients. BMC Infect Dis. 2016;16:274. https://doi.org/10.1186/s12879-016-1592-1
Mehl A, Åsvold BO, Kümmel A, Lydersen S, Paulsen J, Haugan I, et al. Trends in antimicrobial resistance and empiric antibiotic therapy of bloodstream infections at a general hospital in Mid-Norway: a prospective observational study. BMC Infect Dis. 2017;17(1):116. https://doi.org/10.1186/s12879-017-2210-6
Alatorre-Fernández P, Mayoral-Terán C, Velázquez-Acosta C, Franco- Rodríguez C, Flores-Moreno K, Cevallos MA, et al. A polyclonal outbreak of bloodstream infections by Enterococcus faecium in patients with hematologic malignancies. Am J Infect Control. 2017;45(3):260-6. https:// doi.org/10.1016/j.ajic.2016.10.002