2017, Número 4
<< Anterior Siguiente >>
Rev Educ Bioquimica 2017; 36 (4)
Mecanismos moleculares de los fitoestrógenos y su relación con el cáncer
Izquierdo TE, Zarain HA
Idioma: Español
Referencias bibliográficas: 91
Paginas: 101-110
Archivo PDF: 360.11 Kb.
RESUMEN
Los fitoestrógenos son compuestos químicos no esteroideos sintetizados en las plantas,
poseen actividad estrogénica o antiestrogénica, y algunos de ellos se encuentran
abundantemente en alimentos que conforman la dieta. Son de mucho interés ya que
presentan una actividad biológica elevada debido a sus propiedades de modular diversos
procesos celulares importantes como el ciclo y la muerte celular, la transcripción,
vías de señalización, entre otros. Por resultados de estudios realizados en modelos in
vitro y animales, así como estudios epidemiológicos en humanos, se les han atribuido
beneficios a la salud para diversas condiciones patológicas. Sin embargo, debido a
su capacidad de ser agonistas o antagonistas (dependiendo del contexto celular) del
receptor de estrógenos, también podrían ocasionar efectos adversos a la salud. En
esta revisión, nos enfocaremos en las evidencias que existen sobre los efectos de los
fitoestrógenos en diversos modelos de cáncer, así como los mecanismos de acción.
REFERENCIAS (EN ESTE ARTÍCULO)
Duffy C, Perez K, Partridge A (2007) Implications of phytoestrogen intake for breast cancer. CA Cancer J Clin 57: 260-277.
Khan SI, Aumsuwan P, Khan IA, Walker LA, Dasmahapatra AK (2012) Epigenetic events associated with breast cancer and their prevention by dietary components targeting the epigenome. Chem Res Toxicol 25: 61-73.
Messina M, McCaskill-Stevens W, Lampe JW (2006) Addressing the soy and breast cancer relationship: review, commentary, and workshop proceedings. J Natl Cancer Inst 98: 1275-1284.
Ziegler RG (2004) Phytoestrogens and breast cancer. Am J Clin Nutr 79: 183-184.
Keinan-Boker L, van Der Schouw YT, Grobbee DE, Peeters PH (2004) Dietary phytoestrogens and breast cancer risk. Am J Clin Nutr 79: 282-288.
Shimazu T, Inoue M, Sasazuki S, Iwasaki M, Sawada N, Yamaji T, Tsugane S, Group JS (2011) Plasma isoflavones and the risk of lung cancer in women: a nested case-control study in Japan. Cancer Epidemiol Biomarkers Prev 20: 419-427.
Yang WS, Va P, Wong MY, Zhang HL, Xiang YB (2011) Soy intake is associated with lower lung cancer risk: results from a meta-analysis of epidemiologic studies. Am J Clin Nutr 94: 1575-1583.
Ko KP, Park SK, Park B, Yang JJ, Cho LY, Kang C, Kim CS, Gwack J, Shin A, Kim Y, Kim J, Yang HK, Kang D, Chang SH, Shin HR, Yoo KY (2010) Isoflavones from phytoestrogens and gastric cancer risk: a nested case-control study within the Korean Multicenter Cancer Cohort. Cancer Epidemiol Biomarkers Prev 19: 1292-1300.
He J, Wang S, Zhou M, Yu W, Zhang Y, He X (2015) Phytoestrogens and risk of prostate cancer: a meta-analysis of observational studies. World J Surg Oncol 13: 231.
Zhang Q, Feng H, Qluwakemi B, Wang J, Yao S, Cheng G, Xu H, Qiu H, Zhu L, Yuan M (2017) Phytoestrogens and risk of prostate cancer: an updated meta-analysis of epidemiologic studies. Int J Food Sci Nutr 68: 28-42.
Maffini MV, Rubin BS, Sonnenschein C, Soto AM (2006) Endocrine disruptors and reproductive health: the case of bisphenol-A. Mol Cell Endocrinol 254-255: 179-186.
Haselkorn T, Stewart SL, Horn-Ross PL (2003) Why are thyroid cancer rates so high in southeast asian women living in the United States? The bay area thyroid cancer study. Cancer Epidemiol Biomarkers Prev 12: 144- 150.
Persson I (2000) Estrogens in the causation of breast, endometrial and ovarian cancers - evidence and hypotheses from epidemiological findings. J Steroid Biochem Mol Biol 74: 357- 364.
Eden JA (2012) Phytoestrogens for menopausal symptoms: a review. Maturitas 72: 157-159.
Qu XL, Fang Y, Zhang M, Zhang YZ (2014) Phytoestrogen intake and risk of ovarian cancer: a meta- analysis of 10 observational studies. Asian Pac J Cancer Prev 15: 9085- 9091.
Bilal I, Chowdhury A, Davidson J, Whitehead S (2014) Phytoestrogens and prevention of breast cancer: The contentious debate. World J Clin Oncol 5: 705-712.
Webb AL, McCullough ML (2005) Dietary lignans: potential role in cancer prevention. Nutr Cancer 51: 117-131.
Cornwell T, Cohick W, Raskin I (2004) Dietary phytoestrogens and health. Phytochemistry 65: 995-1016.
Messina MJ, Loprinzi CL (2001) Soy for breast cancer survivors: a critical review of the literature. J Nutr 131: 3095S-3108S.
Liggins J, Bluck LJ, Runswick S, Atkinson C, Coward WA, Bingham SA (2000) Daidzein and genistein contents of vegetables. Br J Nutr 84: 717-725.
Knight DC, Eden JA (1996) A review of the clinical effects of phytoestrogens. Obstet Gynecol 87: 897-904.
Mortensen A, Kulling SE, Schwartz H, Rowland I, Ruefer CE, Rimbach G, Cassidy A, Magee P, Millar J, Hall WL, Kramer Birkved F, Sorensen IK, Sontag G (2009) Analytical and compositional aspects of isoflavones in food and their biological effects. Mol Nutr Food Res 53 Suppl 2: S266-309.
Patisaul HB, Jefferson W (2010) The pros and cons of phytoestrogens. Front Neuroendocrinol 31: 400-419.
Vitale DC, Piazza C, Melilli B, Drago F, Salomone S (2013) Isoflavones: estrogenic activity, biological effect and bioavailability. Eur J Drug Metab Pharmacokinet 38: 15-25.
Atkinson C, Frankenfeld CL, Lampe JW (2005) Gut bacterial metabolism of the soy isoflavone daidzein: exploring the relevance to human health. Exp Biol Med (Maywood) 230: 155- 170.
Karr SC, Lampe JW, Hutchins AM, Slavin JL (1997) Urinary isoflavonoid excretion in humans is dose dependent at low to moderate levels of soy-protein consumption. Am J Clin Nutr 66: 46-51.
Verkasalo PK, Appleby PN, Allen NE, Davey G, Adlercreutz H, Key TJ (2001) Soya intake and plasma concentrations of daidzein and genistein: validity of dietary assessment among eighty British women (Oxford arm of the European Prospective Investigation into Cancer and Nutrition). Br J Nutr 86: 415-421.
Leclercq G, Jacquot Y (2014) Interactions of isoflavones and other plant derived estrogens with estrogen receptors for prevention and treatment of breast cancer-considerations concerning related efficacy and safety. J Steroid Biochem Mol Biol 139: 237-244.
Jenkins S, Betancourt AM, Wang J, Lamartiniere CA (2012) Endocrine-active chemicals in mammary cancer causation and prevention. J Steroid Biochem Mol Biol 129: 191-200.
Rietjens IM, Sotoca AM, Vervoort J, Louisse J (2013) Mechanisms underlying the dualistic mode of action of major soy isoflavones in relation to cell proliferation and cancer risks. Mol Nutr Food Res 57: 100-113.
Murkies AL, Wilcox G, Davis SR (1998) Clinical review 92: Phytoestrogens. J Clin Endocrinol Metab 83: 297-303.
Wang TT, Sathyamoorthy N, Phang JM (1996) Molecular effects of genistein on estrogen receptor mediated pathways. Carcinogenesis 17: 271-275.
Kuiper GG, Carlsson B, Grandien K, Enmark E, Ha Ggblad J, Nilsson S, Gustafsson JK (1997) Comparison of the Ligand Binding Specificity and Transcript Tissue Distribution of Estrogen Receptors alpha and beta. Endocrinology 138: 863-870.
Freyberger A, Schmuck G (2005) Screening for estrogenicity and anti-estrogenicity: a critical evaluation of an MVLN cell-based transactivation assay. Toxicol Lett 155: 1-13.
Totta P, Acconcia F, Virgili F, Cassidy A, Weinberg PD, Rimbach G, Marino M (2005) Daidzeinsulfate metabolites affect transcriptional and antiproliferative activities of estrogen receptor-beta in cultured human cancer cells. J Nutr 135: 2687-2693.
Magee PJ, Rowland IR (2004) Phytooestrogens, their mechanism of action: current evidence for a role in breast and prostate cancer. Br J Nutr 91: 513-531.
d e L emo s M L (2001) Effects of soy phytoestrogens genistein and daidzein on breast cancer growth. Ann Pharmacother 35: 1118-1121.
An J, Tzagarakis-Foster C, Scharschmidt TC, Lomri N, Leitman DC (2001) Estrogen receptor beta-selective transcriptional activity and recruitment of coregulators by phytoestrogens. J Biol Chem 276: 17808-17814.
Brzezinski A, Debi A (1999) Phytoestrogens: the “natural” selective estrogen receptor modulators? Eur J Obstet Gynecol Reprod Biol 85: 47-51.
Strom A, Hartman J, Foster JS, Kietz S, Wimalasena J, Gustafsson JA (2004) Estrogen receptor beta inhibits 17beta-estradiolstimulated proliferation of the breast cancer cell line T47D. Proc Natl Acad Sci U S A 101: 1566-1571.
Rice S, Mason HD, Whitehead SA (2006) Phytoestrogens and the ir lowdose combinations inhibit mRNA expression and activity of aromatase in human granulosaluteal cells. J Steroid Biochem Mol Biol 101: 216-225.
Rice S, Whitehead SA (2006) Phytoestrogens and breast cancer--promoters or protectors? Endocr Relat Cancer 13: 995-1015.
Islam MA, Bekele R, Vanden Berg JH, Kuswanti Y, Thapa O, Soltani S, van Leeuwen FX, Rietjens IM, Murk AJ (2015) Deconjugation of soy isoflavone glucuronides needed for estrogenic activity. Toxicol In Vitro 29: 706-715.
Hsieh CY, Santell RC, Haslam SZ, Helferich WG (1998) Estrogenic effects of genistein on the growth of estrogen receptor-positive human breast cancer (MCF-7) cells in vitro and in vivo. Cancer Res 58: 3833-3838.
Lecomte S, Demay F, Ferriere F, Pakdel F (2017) Phytochemicals Targeting Estrogen Receptors: Beneficial Rather Than Adverse Effects? Int J Mol Sci 18
Rietjens I, Louisse J, Beekmann K (2017) The potential health effects of dietary phytoestrogens. Br J Pharmacol 174: 1263- 1280.
Martin KR (2007) Using nutrigenomics to evaluate apoptosis as a preemptive target in cancer prevention. Curr Cancer Drug Targets 7: 438-446.
Mathers JC, Coxhead JM, Tyson J (2007) Nutrition and DNA repair--potential molecular mechanisms of action. Curr Cancer Drug Targets 7: 425-431.
Baldwin AS, Jr. (1996) The NF-kappa B and I kappa B proteins: new discoveries and insights. Annu Rev Immunol 14: 649-683.
Pahl HL (1999) Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene 18: 6853-6866.
Cal C, Garban H, Jazirehi A, Yeh C, Mizutani Y, Bonavida B (2003) Resveratrol and cancer: chemoprevention, apoptosis, and chemoimmunosensitizing activities. Curr Med Chem Anticancer Agents 3: 77-93.
Estrov Z, Shishodia S, Faderl S, Harris D, Van Q, Kantarjian HM, Talpaz M, Aggarwal BB (2003) Resveratrol blocks interleukin-1betainduced activation of the nuclear transcription factor NF-kappaB, inhibits proliferation, causes S-phase arrest, and induces apoptosis of acute myeloid leukemia cells. Blood 102: 987-995.
Ii M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y (2006) Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood) 231: 20-27.
Stakleff KS, Sloan T, Blanco D, Marcanthony S, Booth TD, Bishayee A (2012) Resveratrol exerts differential effects in vitro and in vivo against ovarian cancer cells. Asian Pac J Cancer Prev 13: 1333-1340.
Heldring N, Pike A, Andersson S, Matthews J, Cheng G, Hartman J, Tujague M, Strom A, Treuter E, Warner M, Gustafsson JA (2007) Estrogen receptors: how do they signal and what are their targets. Physiol Rev 87: 905-931.
Barnes S (2010) The biochemistry, chemistry and physiology of the isoflavones in soybeans and their food products. Lymphat Res Biol 8: 89-98.
Shimizu M, Weinstein IB (2005) Modulation of signal transduction by tea catechins and related phytochemicals. Mutat Res 591: 147- 160.
Anastasius N, Boston S, Lacey M, Storing N, Whitehead SA (2009) Evidence that lowdose, long-term genistein treatment inhibits oestradiol-stimulated growth in MCF-7 cells by down-regulation of the PI3-kinase/Akt signalling pathway. J Steroid Biochem Mol Biol 116: 50-55.
Cotrim CZ, Fabris V, Doria ML, Lindberg K, Gustafsson JA, Amado F, Lanari C, Helguero LA (2013) Estrogen receptor beta growthinhibitory effects are repressed through activation of MAPK and PI3K signalling in mammary epithelial and breast cancer cells. Oncogene 32: 2390-2402.
Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646- 674.
Tobin NP, Bergh J (2012) Analysis of Cyclin D1 in Breast Cancer: A Call to Arms. Curr Breast Cancer Rep 4: 171-173.
Hsieh TC, Wu JM (2008) Suppression of cell proliferation and gene expression by combinatorial synergy of EGCG, resveratrol and gamma-tocotrienol in estrogen receptorpositive MCF-7 breast cancer cells. Int J Oncol 33: 851-859.
Rahal OM, Simmen RC (2010) PTEN and p53 cross-regulation induced by soy isoflavone genistein promotes mammary epithelial cell cycle arrest and lobuloalveolar differentiation. Carcinogenesis 31: 1491-1500.
Chu IM, Hengst L, Slingerland JM (2008) The Cdk inhibitor p27 in human cancer: prognostic potential and relevance to anticancer therapy. Nat Rev Cancer 8: 253-267.
May P, May E (1999) Twenty years of p53 research: structural and functional aspects of the p53 protein. Oncogene 18: 7621-7636.
Sakamoto T, Horiguchi H, Oguma E, Kayama F (2010) Effects of diverse dietary phytoestrogens on cell growth, cell cycle and apoptosis in estrogen-receptor-positive breast cancer cells. J Nutr Biochem 21: 856-864.
Seo HS, Ju JH, Jang K, Shin I (2011) Induction of apoptotic cell death by phytoestrogens by up-regulating the levels of phospho-p53 and p21 in normal and malignant estrogen receptor alpha-negative breast cells. Nutr Res 31: 139-146.
Choi EJ, Kim GH (2008) Daidzein causes cell cycle arrest at the G1 and G2/M phases in human breast cancer MCF-7 and MDA-MB-453 cells. Phytomedicine 15: 683-690.
Eto I (2006) “Nutritional and chemopreventive anti-cancer agents up-regulate expression of p27Kip1, a cyclin-dependent kinase inhibitor, in mouse JB6 epidermal and human MCF7, MDA-MB-321 and AU565 breast cancer cells”. Cancer Cell Int 6: 20.
Privat M, Aubel C, Arnould S, Communal Y, Ferrara M, Bignon YJ (2010) AKT and p21 WAF1/CIP1 as potential genistein targets in BRCA1-mutant human breast cancer cell lines. Anticancer Res 30: 2049-2054.
Lavigne JA, Takahashi Y, Chandramouli GV, Liu H, Perkins SN, Hursting SD, Wang TT (2008) Concentration-dependent effects of genistein on global gene expression in MCF-7 breast cancer cells: an oligo microarray study. Breast Cancer Res Treat 110: 85-98.
Rodriguez M, Schaper J (2005) Apoptosis: measurement and technical issues. J Mol Cell Cardiol 38: 15-20.
McIlwain DR, Berger T, Mak TW (2013) Caspase functions in cell death and disease. Cold Spring Harb Perspect Biol 5: a008656.
Chen FP, Chien MH (2014) Phytoestrogens induce apoptosis through a mitochondria/ caspase pathway in human breast cancer cells. Climacteric 17: 385-392.
Chen FP, Chien MH (2014) Phytoestrogens induce differential effects on both normal and malignant human breast cells in vitro. Climacteric 17: 682-691.
Seo HS, Choi HS, Choi HS, Choi YK, Um JY, Choi I, Shin YC, Ko SG (2011) Phytoestrogens induce apoptosis via extrinsic pathway, inhibiting nuclear factor-kappaB signaling in HER2-overexpressing breast cancer cells. Anticancer Res 31: 3301-3313.
Izquierdo-Torres E, Rodriguez G, Meneses- Morales I, Zarain-Herzberg A (2017) ATP2A3 gene as an important player for resveratrol anticancer activity in breast cancer cells. Mol Carcinog 56: 1703-1711.
Barron CC, Moore J, Tsakiridis T, Pickering G, Tsiani E (2014) Inhibition of human lung cancer cell proliferation and survival by wine. Cancer Cell Int 14: 6.
Sajish M, Schimmel P (2015) A human tRNA synthetase is a potent PARP1-activating effector target for resveratrol. Nature 519: 370-373.
Lin HY, Lansing L, Merillon JM, Davis FB, Tang HY, Shih A, Vitrac X, Krisa S, Keating T, Cao HJ, Bergh J, Quackenbush S, Davis PJ (2006) Integrin alphaVbeta3 contains a receptor site for resveratrol. FASEB J 20: 1742-1744.
Huang Y, Nayak S, Jankowitz R, Davidson NE, Oesterreich S (2011) Epigenetics in breast cancer: what’s new? Breast Cancer Res 13: 225.
Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128: 683-692.
Gronbaek K, Hother C, Jones PA (2007) Epigenetic changes in cancer. APMIS 115: 1039-1059.
Fuks F (2005) DNA methylation and histone modifications: teaming up to silence genes. Curr Opin Genet Dev 15: 490-495.
Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839: 627-643.
Fucito A, Lucchetti C, Giordano A, Romano G (2008) Genetic and epigenetic alterations in breast cancer: what are the perspectives for clinical practice? Int J Biochem Cell Biol 40: 565-575.
Li Y, Chen H, Hardy TM, Tollefsbol TO (2013) Epigenetic regulation of multiple tumorrelated genes leads to suppression of breast tumorigenesis by dietary genistein. PLoS One 8: e54369.
Li Y, Meeran SM, Patel SN, Chen H, Hardy TM, Tollefsbol TO (2013) Epigenetic reactivation of estrogen receptor-alpha (ERalpha) by genistein enhances hormonal therapy sensitivity in ERalpha-negative breast cancer. Mol Cancer 12: 9.
Mirza S, Sharma G, Parshad R, Gupta SD, Pandya P, Ralhan R (2013) Expression of DNA methyltransferases in breast cancer patients and to analyze the effect of natural compounds on DNA methyltransferases and associated proteins. J Breast Cancer 16: 23-31.
Venturelli S, Berger A, Bocker A, Busch C, Weiland T, Noor S, Leischner C, Schleicher S, Mayer M, Weiss TS, Bischoff SC, Lauer UM, Bitzer M (2013) Resveratrol as a pan- HDAC inhibitor alters the acetylation status of histone [corrected] proteins in human-derived hepatoblastoma cells. PLoS One 8: e73097.
Singh B, Shoulson R, Chatterjee A, Ronghe A, Bhat NK, Dim DC, Bhat HK (2014) Resveratrol inhibits estrogen-induced breast carcinogenesis through induction of NRF2- mediated protective pathways. Carcinogenesis 35: 1872-1880.