2017, Número 2
<< Anterior Siguiente >>
Arch Neurocien 2017; 22 (2)
Investigación y terapias en la enfermedad de Alzheimer basadas en beta amiloide y tau
López-Camacho PY, Guzmán-Hernández RNicté-Ha, Hernández GVH, Díaz MJE, García-Sierra F, Basurto-Islas G
Idioma: Español
Referencias bibliográficas: 76
Paginas: 72-88
Archivo PDF: 462.97 Kb.
RESUMEN
Introducción: la enfermedad de Alzheimer (EA) es un proceso crónico
neurodegenerativo que causa demencia y deterioro de las funciones cognitivas.
Entre los estudios dirigidos al desarrollo de posibles terapias, las investigaciones
sobre la inhibición de la agregación del péptido β amiloide (PβA) y la proteína tau
presentan potenciales efectos terapéuticos.
Objetivo: realizar una actualización descriptiva de las principales investigaciones
de estrategias terapéuticas para la EA basados en el estudio del PβA y tau.
Método: se empleó la base de datos Pubmed para la búsqueda bibliográfica,
utilizando palabras clave relacionadas con el tema de estudio. Se realizaron
inmunohistoquímicas en tejido cerebral de pacientes con EA.
Resultados: por su relevancia patológica las principales investigaciones dirigidas
al desarrollo de estrategias terapéuticas se basan en el estudio del PβA y tau,
tales como: inhibición de la producción del PβA, terapias degradadoras del
PβA, inmunoterapias anti-βA y anti-tau, compuestos inhibidores y disociadores
de agregados del PβA y tau, inhibición de cinasas, activación de fosfatasas y
estabilización de microtúbulos.
Discusión y conclusión: la formación y agregación
del PβA y las modificaciones postraduccionales de tau que inducen su agregación
han demostrado ser clave para el establecimiento de la EA, por lo que es necesario
inhibir su formación en etapas tempranas y así evitar la evolución de la enfermedad.
Sin embargo; estos mecanismos han causado efectos colaterales al bloquear
procesos fisiológicos importantes. Es por ello que la inhibición de agregados del
PβA y tau de manera conjunta parece ser la estrategia terapéutica más viable contra
la EA.
Research and therapeutics in Alzheimer’s disease based on amyloid beta and tau
REFERENCIAS (EN ESTE ARTÍCULO)
1.Basurto-Islas G, Luna-Munoz J, Guillozet-Bongaarts AL, Binder LI, Mena R, Garcia-Sierra F. Accumulation of aspartic acid421- and glutamic acid391-cleaved tau in neurofibrillary tangles correlates with progression in Alzheimer disease. J Neuropathol Exp Neurol 2008; 67(5): 470-83.
2.Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82(4): 239-59.
3.Shastry BS. Molecular and cell biological aspects of Alzheimer disease. J Hum Genet 2001; 46(11): 609-18.
4.Cappai R, White AR. Amyloid beta. Int J Biochem Cell Biol 1999; 31(9): 885-9.
5.Fahrenholz F. Alpha-secretase as a therapeutic target. Curr Alzheimer Res 2007; 4(4): 412-7.
6.Chang WP, Downs D, Huang XP, Da H, Fung KM, Tang J. Amyloid-beta reduction by memapsin 2 (beta-secretase) immunization. FASEB J 2007; 21(12): 3184-96.
7.Han SH, Mook-Jung I. Diverse molecular targets for therapeutic strategies in Alzheimer's disease. J Korean Med Sci 2014; 29(7): 893-902.
8.Menting KW, Claassen JA. beta-secretase inhibitor; a promising novel therapeutic drug in Alzheimer's disease. Front Aging Neurosci 2014; 6: 165.
9.Giacobini E, Gold G. Alzheimer disease therapy--moving from amyloid-beta to tau. Nat Rev Neurol 2013; 9(12): 677-86.
10.Sisodia SS, St George-Hyslop PH. gamma-Secretase, Notch, Abeta and Alzheimer's disease: where do the presenilins fit in? Nat Rev Neurosci 2002; 3(4): 281-90.
11.Perez-Garmendia R, Ibarra-Bracamontes V, Vasilevko V, et al. Anti-11[E]-pyroglutamate-modified amyloid beta antibodies cross-react with other pathological Abeta species: relevance for immunotherapy. J Neuroimmunol 2010; 229(1-2): 248-55.
12.Castellano JM, Kim J, Stewart FR, et al. Human apoE isoforms differentially regulate brain amyloid-beta peptide clearance. Science translational medicine 2011; 3(89): 89ra57.
13.Jiang Q, Lee CY, Mandrekar S, et al. ApoE promotes the proteolytic degradation of Abeta. Neuron 2008; 58(5): 681-93.
14.Liu CC, Kanekiyo T, Xu H, Bu G. Apolipoprotein E and Alzheimer disease: risk, mechanisms and therapy. Nature reviews Neurology 2013; 9(2): 106-18.
15.Nikolic WV, Bai Y, Obregon D. Transcutaneous beta-amyloid immunization reduces cerebral beta-amyloid deposits without T cell infiltration and microhemorrhage. Proc Natl Acad Sci U S A 2007; 104(7): 2507-12.
16.Robinson SR, Bishop GM, Lee HG, Munch G. Lessons from the AN 1792 Alzheimer vaccine: lest we forget. Neurobiol Aging 2004; 25(5): 609-15.
17.Wiessner C, Wiederhold KH, Tissot AC. The second-generation active Abeta immunotherapy CAD106 reduces amyloid accumulation in APP transgenic mice while minimizing potential side effects. J Neurosci 2011; 31(25): 9323-31.
18.Muhs A, Hickman DT, Pihlgren M, et al. Liposomal vaccines with conformation-specific amyloid peptide antigens define immune response and efficacy in APP transgenic mice. Proc Natl Acad Sci U S A 2007; 104(23): 9810-5.
19.Wilcock DM, Munireddy SK, Rosenthal A, Ugen KE, Gordon MN, Morgan D. Microglial activation facilitates Abeta plaque removal following intracranial anti-Abeta antibody administration. Neurobiol Dis 2004; 15(1): 11-20.
20.Solomon B, Koppel R, Frankel D, Hanan-Aharon E. Disaggregation of Alzheimer beta-amyloid by site-directed mAb. Proc Natl Acad Sci U S A 1997; 94(8): 4109-12.
21.DeMattos RB, Bales KR, Cummins DJ, Dodart JC, Paul SM, Holtzman DM. Peripheral anti-A beta antibody alters CNS and plasma A beta clearance and decreases brain A beta burden in a mouse model of Alzheimer's disease. Proc Natl Acad Sci U S A 2001; 98(15): 8850-5.
22.Saido TC, Iwatsubo T, Mann DM, Shimada H, Ihara Y, Kawashima S. Dominant and differential deposition of distinct beta-amyloid peptide species, A beta N3(pE), in senile plaques. Neuron 1995; 14(2): 457-66.
23.Bayer AJ, Bullock R, Jones RW, et al. Evaluation of the safety and immunogenicity of synthetic Abeta42 (AN1792) in patients with AD. Neurology 2005; 64(1): 94-101.
24.Panza F, Frisardi V, Solfrizzi V. Immunotherapy for Alzheimer's disease: from anti-beta-amyloid to tau-based immunization strategies. Immunotherapy 2012; 4(2): 213-38.
25.Fu HJ, Liu B, Frost JL, Lemere CA. Amyloid-beta immunotherapy for Alzheimer's disease. CNS Neurol Disord Drug Targets 2010; 9(2): 197-206.
26.Sellarajah S, Lekishvili T, Bowring C. Synthesis of analogues of Congo red and evaluation of their anti-prion activity. J Med Chem 2004; 47(22): 5515-34.
27.Cavaliere P, Torrent J, Prigent S, et al. Binding of methylene blue to a surface cleft inhibits the oligomerization and fibrillization of prion protein. Biochim Biophys Acta 2013; 1832(1): 20-8.
28.Fuse S, Matsumura K, Fujita Y, Sugimoto H, Takahashi T. Development of dual targeting inhibitors against aggregations of amyloid-beta and tau protein. Eur J Med Chem 2014; 85: 228-34.
29.Nakagami Y, Nishimura S, Murasugi T. A novel beta-sheet breaker, RS-0406, reverses amyloid beta-induced cytotoxicity and impairment of long-term potentiation in vitro. Br J Pharmacol 2002; 137(5): 676-82.
30.O'Hare E, Scopes DI, Treherne JM, Norwood K, Spanswick D, Kim EM. RS-0406 arrests amyloid-beta oligomerinduced behavioural deterioration in vivo. Behav Brain Res 2010; 210(1): 32-7.
31.Schilling S, Appl T, Hoffmann T. Inhibition of glutaminyl cyclase prevents pGlu-Abeta formation after intracortical/hippocampal microinjection in vivo/in situ. J Neurochem 2008; 106(3): 1225-36.
32.Salloway S, Sperling R, Keren R. A phase 2 randomized trial of ELND005, scyllo-inositol, in mild to moderate Alzheimer disease. Neurology 2011; 77(13): 1253-62.
33.Grundke-Iqbal I, Iqbal K, Tung YC, Quinlan M, Wisniewski HM, Binder LI. Abnormal phosphorylation of the microtubule-associated protein tau (tau) in Alzheimer cytoskeletal pathology. Proc Natl Acad Sci USA 1986; 83(13): 4913-7.
34.Basurto-Islas G M-RS, Binder LI, Garcia-Sierra F. Pathology of the Cleaved Tau Protein in the Context of Toxicity and the Formation of Neurofibrillary Tangles. European Neurological Review 2009; 4(2): 20-3.
35.Garcia-Sierra F, Mondragon-Rodriguez S, Basurto-Islas G. Truncation of tau protein and its pathological significance in Alzheimer's disease. J Alzheimers Dis 2008; 14(4): 401-9.
36.Bulic B, Pickhardt M, Mandelkow EM, Mandelkow E. Tau protein and tau aggregation inhibitors. Neuropharmacology 2010; 59(4-5): 276-89
37.Stack C, Jainuddin S, Elipenahli C, et al. Methylene blue upregulates Nrf2/ARE genes and prevents tau-related neurotoxicity. Hum Mol Genet 2014; 23(14): 3716-32.
38.Ginimuge PR, Jyothi SD. Methylene blue: revisited. J Anaesthesiol Clin Pharmacol 2010; 26(4): 517-20.
39.Plattner F, Angelo M, Giese KP. The roles of cyclin-dependent kinase 5 and glycogen synthase kinase 3 in tau hyperphosphorylation. J Biol Chem 2006; 281(35): 25457-65.
40.Himmelstein DS, Ward SM, Lancia JK, Patterson KR, Binder LI. Tau as a therapeutic target in neurodegenerative disease. Pharmacol Ther 2012; 136(1): 8-22.
41.Hu JP, Xie JW, Wang CY, et al. Valproate reduces tau phosphorylation via cyclin-dependent kinase 5 and glycogen synthase kinase 3 signaling pathways. Brain Res Bull 2011; 85(3-4): 194-200.
42.Hampel H, Ewers M, Burger K. Lithium trial in Alzheimer's disease: a randomized, single-blind, placebocontrolled, multicenter 10-week study. J Clin Psychiatry 2009; 70(6): 922-31.
43.Bhat R, Xue Y, Berg S. Structural insights and biological effects of glycogen synthase kinase 3-specific inhibitor AR-A014418. J Biol Chem 2003; 278(46): 45937-45.
44.Dominguez JM, Fuertes A, Orozco L, del Monte-Millan M, Delgado E, Medina M. Evidence for irreversible inhibition of glycogen synthase kinase-3beta by tideglusib. J Biol Chem 2012; 287(2): 893-904.
45.Arendash GW, Mori T, Cao C, et al. Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer's disease mice. J Alzheimers Dis 2009; 17(3): 661-80.
46.Engler TA, Malhotra S, Burkholder TP. The development of potent and selective bisarylmaleimide GSK3 inhibitors. Bioorg Med Chem Lett 2005; 15(4): 899-903.
47.Zheng YL, Kesavapany S, Gravell M. A Cdk5 inhibitory peptide reduces tau hyperphosphorylation and apoptosis in neurons. EMBO J 2005; 24(1): 209-20.
48.Helal CJ, Sanner MA, Cooper CB. Discovery and SAR of 2-aminothiazole inhibitors of cyclin-dependent kinase 5/p25 as a potential treatment for Alzheimer's disease. Bioorg Med Chem Lett 2004; 14(22): 5521-5.
49..Liu F, Grundke-Iqbal I, Iqbal K, Gong CX. Contributions of protein phosphatases PP1, PP2A, PP2B and PP5 to the regulation of tau phosphorylation. Eur J Neurosci 2005; 22(8): 1942-50.
50.Iqbal K, Gong CX, Liu F. Hyperphosphorylation-induced tau oligomers. Front Neurol 2013; 4: 112.
51.Voronkov M, Braithwaite SP, Stock JB. Phosphoprotein phosphatase 2A: a novel druggable target for Alzheimer's disease. Future Med Chem 2011; 3(7): 821-33.
52.Chohan MO, Khatoon S, Iqbal IG, Iqbal K. Involvement of I2PP2A in the abnormal hyperphosphorylation of tau and its reversal by Memantine. FEBS Lett 2006; 580(16): 3973-9.
53.Kickstein E, Krauss S, Thornhill P. Biguanide metformin acts on tau phosphorylation via mTOR/protein phosphatase 2A (PP2A) signaling. Proc Natl Acad Sci U S A 2010; 107(50): 21830-5.
54.Aceto N, Bertino P, Barbone D. Taurolidine and oxidative stress: a rationale for local treatment of mesothelioma. Eur Respir J 2009; 34(6): 1399-407.
55.Liu B, Arbogast LA. Progesterone decreases tyrosine hydroxylase phosphorylation state and increases protein phosphatase 2A activity in the stalk-median eminence on proestrous afternoon. J Endocrinol 2010; 204(2): 209-19.
56.Yang X, Yang Y, Fu Z. Melatonin ameliorates Alzheimer-like pathological changes and spatial memory retention impairment induced by calyculin A. J Psychopharmacol 2011; 25(8): 1118-25.
57.Wu Y, Song P, Xu J, Zhang M, Zou MH. Activation of protein phosphatase 2A by palmitate inhibits AMPactivated protein kinase. J Biol Chem 2007; 282(13): 9777-88. 58.Basurto-Islas G, Blanchard J, Tung YC. Therapeutic benefits of a component of coffee in a rat model of Alzheimer's disease. Neurobiol Aging 2014; 35(12): 2701-12. 59.Brunden KR, Zhang B, Carroll J. Epothilone D improves microtubule density, axonal integrity, and cognition in a transgenic mouse model of tauopathy. J Neurosci 2010; 30(41): 13861-6.
60.Brunden KR, Yao Y, Potuzak JS. The characterization of microtubule-stabilizing drugs as possible therapeutic agents for Alzheimer's disease and related tauopathies. Pharmacol Res 2011; 63(4): 341-51.
61.Zhang B, Maiti A, Shively S. Microtubule-binding drugs offset tau sequestration by stabilizing microtubules and reversing fast axonal transport deficits in a tauopathy model. Proc Natl Acad Sci U S A 2005; 102(1): 227-31.
62.Zhang B, Carroll J, Trojanowski JQ. The microtubule-stabilizing agent, epothilone D, reduces axonal dysfunction, neurotoxicity, cognitive deficits, and Alzheimer-like pathology in an interventional study with aged tau transgenic mice. J Neurosci 2012; 32(11): 3601-11.
63.Matsuoka Y, Gray AJ, Hirata-Fukae C. Intranasal NAP administration reduces accumulation of amyloid peptide and tau hyperphosphorylation in a transgenic mouse model of Alzheimer's disease at early pathological stage. J Mol Neurosci 2007; 31(2): 165-70.
64.Lemere CA. Immunotherapy for Alzheimer's disease: hoops and hurdles. Mol Neurodegener 2013; 8: 36.
65.Lasagna-Reeves CA, Castillo-Carranza DL, Jackson GR, Kayed R. Tau oligomers as potential targets for immunotherapy for Alzheimer's disease and tauopathies. Curr Alzheimer Res 2011; 8(6): 659-65.
66.Bussiere T, Hof PR, Mailliot C. Phosphorylated serine422 on tau proteins is a pathological epitope found in several diseases with neurofibrillary degeneration. Acta Neuropathol 1999; 97(3): 221-30.
67.Troquier L, Caillierez R, Burnouf S. Targeting phospho-Ser422 by active Tau Immunotherapy in the THYTau22 mouse model: a suitable therapeutic approach. Curr Alzheimer Res 2012; 9(4): 397-405.
68.Boimel M, Grigoriadis N, Lourbopoulos A, Haber E, Abramsky O, Rosenmann H. Efficacy and safety of immunization with phosphorylated tau against neurofibrillary tangles in mice. Exp Neurol 2010; 224(2): 472-85.
69.Chai X, Wu S, Murray TK, et al. Passive immunization with anti-Tau antibodies in two transgenic models: reduction of Tau pathology and delay of disease progression. J Biol Chem 2011; 286(39): 34457-67.
70.Walls KC, Ager RR, Vasilevko V, Cheng D, Medeiros R, LaFerla FM. p-Tau immunotherapy reduces soluble and insoluble tau in aged 3xTg-AD mice. Neurosci Lett 2014; 575: 96-100.
71.Yanamandra K, Kfoury N, Jiang H. Anti-tau antibodies that block tau aggregate seeding in vitro markedly decrease pathology and improve cognition in vivo. Neuron 2013; 80(2): 402-14.
72.Hardy JA, Higgins GA. Alzheimer's disease: the amyloid cascade hypothesis. Science 1992; 256(5054): 184-5.
73.Mattson MP. Pathways towards and away from Alzheimer's disease. Nature 2004; 430(7000): 631-9.
74.Schmitz C, Rutten BP, Pielen A. Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer's disease. Am J Pathol 2004; 164(4): 1495-502.
75.Corrada MM, Berlau DJ, Kawas CH. A population-based clinicopathological study in the oldest-old: the 90+ study. Curr Alzheimer Res 2012; 9(6): 709-17.
76.Braak H, Braak E. Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol (Berl) 1991; 82(4): 239-59.
77.Iqbal K, Alonso Adel C, Chen S. Tau pathology in Alzheimer disease and other tauopathies. Biochim Biophys Acta 2005; 1739(2-3): 198-210.
78.DaRocha-Souto B, Scotton TC, Coma M. Brain oligomeric beta-amyloid but not total amyloid plaque burden correlates with neuronal loss and astrocyte inflammatory response in amyloid precursor protein/tau transgenic mice. J Neuropathol Exp Neurol 2011; 70(5): 360-76.