2017, Número 2
<< Anterior Siguiente >>
Arch Neurocien 2017; 22 (2)
Comunicación bidireccional de la microbiota intestinal en el desarrollo del sistema nervioso central y en la enfermedad de Parkinson
Gómez CM, Morales GMR
Idioma: Español
Referencias bibliográficas: 126
Paginas: 53-71
Archivo PDF: 629.11 Kb.
RESUMEN
La incidencia de factores ambientales puede perturbar la programación
del neurodesarrollo, manifestando sus efectos dañinos en la estructura y
función del cerebro. Debido a un proceso evolutivo los microorganismos
intestinales guardan una relación simbiótica en los mamíferos; el intestino del
recién nacido puede poblarse rápida y densamente por microorganismos
que contribuyen al desarrollo de la barrera epitelial, homeostasis intestinal
e inmunidad innata, esta microbiota tiene además efectos sobre la función
y desarrollo de otros órganos. Durante el neurodesarrollo, el cerebro es
sensible a las señales originadas por la microbiota gastrointestinal, se ha
demostrado que las infecciones originadas por microorganismos en este
periodo generan trastornos neurológicos como autismo y esquizofrenia.
Estudios en roedores, muestran que la exposición a bifidobacterias
infantis durante el neurodesarrollo ocasionan ansiedad y daño cognitivo.
La enfermedad de Parkinson (EP) es una α-sinucleopatía que afecta el
eje tracto gastrointestinal-cerebro, por lo general se presentan cambios
neurodegenerativos y síntomas gastrointestinales, preceden al deterioro
neuronal en esta enfermedad, y en su inicio la microbiota representa la
vía de entrada de factores internos que generan la desregulación del eje
cerebro-tracto gastrointestinal, la asociación entre la disbiosis intestinal
y la disfunción neurológica sugiere que la modificación de la microbiota
intestinal, proporcionaría una opción terapéutica en la EP.La relación entre
la microbiota gastrointestinal y las señales que modula el neurodesarrollo
del cerebro y la hipótesis de que el proceso patológico de la EP se inicia y
extiende del tracto gastrointestinal al cerebro, es el objetivo de esta revisión.
REFERENCIAS (EN ESTE ARTÍCULO)
1.Burokas A, Moloney RD, Dinan TG, Cryan JF. Microbiota regulation of the mammalian gut-brain axis. Adv Appl Microbiol 2015; 91:1–62.
2.Dinan TG, Stilling RM, Stanton C, Cryan JF. Collective unconscious: how gut microbes shape human behavior J Psychiatr Res 2015; 63:1–9.
3.Collado MC, Cernada M, Bauerl C. Microbial ecology and host-microbiota interactions during early life stages. Gut Microbes 2012; 3:352–65.
4.Voreades N, Kozil A, Weir TL. Diet and the development of the human intestinal microbiome. Front Microbiol 2014; 5:494.
5.Sankar SA, Lagier JC, Pontarotti P, et al. The human gut microbiome, a taxonomic conundrum. Syst Appl Microbiol 2015; 38:276–86.
6.Blaser MJ. The microbiome revolution. J Clin Invest 2014;124:4162–5.
7.Claesson MJ, Cusack S, O’Sullivan O, et al. Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 2011;108 Suppl 1:4586–91.
8.Zapata HJ, Quagliarello VJ. The microbiota and microbiome in aging: potential implications in health and age related diseases. J Am Geriatr Soc 2015; 63:776–81.
9.Prenderville JA, Kennedy PJ, Dinan TG, Cryan JF. Adding fuel to the fire: the impact of stress on the ageing brain Trends Neurosci 2015; 38:13–25.
10.Dominguez-Bello MG, Costello EK, Contreras M. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 2010;107:11971–5. 11.Goedert JJ, Hua X, Yu G, Shi J. Diversity and composition of the adult fecal microbiome associated with history of cesarean birth or appendectomy: analysis of the American Gut Project. E Bio Med 2014;1:167–72. 12.Barrett E, Kerr C, Murphy K, et al. The individual-specific and diverse nature of the preterm infant microbiota Arch Dis Child Fetal Neonatal Ed 2013; 98:F334–40.
13.Costello EK, Stagaman K, Dethlefsen L, et al. The application of ecological theory toward an understanding of the human microbiome. Science 2012;336:1255–62.
14.David LA, Maurice CF, Carmody RN, et al. Diet rapidly and reproducibly alters the human gut microbiome Nature 2014; 505:559–63.
15.Aziz Q, Thompson DG. Brain-gut axis in health and disease. Gastroenterology 1998; 114: 559-78.
16.Schemann M, Neunlist M. The human enteric nervous system. Neurogastroenterol Motil 2004; 16 Suppl 1:55-59.
17.Anlauf M, Schäfer MK, Eiden L, Weihe E. Chemical coding of the human gastrointestinal nervous system:cholinergic, VIPergic, and catecholaminergic phenotypes. J Comp Neurol 2003; 459:90-111.
18.Szurszewski JH. Physiology of mammalian prevertebral ganglia. Annu Rev Physiol 1981; 43:53-68 .
19.Chang HY, Mashimo H, Goyal RK. Musings on the wanderer: what’s new in our understanding of vago-vagal reflex? IV. Current concepts of vagal efferent projections to the gut. Am J Physiol Gastrointest Liver Physiol 2003 284:G357-66.
20.Braak H, Del Tredici K, Rüb U, de Vos RA, Jansen Steur EN, Braak E. Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 2003;24:197-211.
21.Dickson DW, Fujishiro H, Orr C, Delle Donne A, Josephs KA, Frigerio R, Burnett M, Parisi JE, Klos KJ, Ahlskog JE. Neuropathology of non-motor features of Parkinson disease. Parkinsonism Relat Disord 2009; 15 Suppl 3: S1-S5
22.Cersosimo MG, Raina GB, Pecci C, Pellene A, Calandra CR, Gutiérrez C, Micheli FE, Benarroch EE. Gastrointestinal manifestations in Parkinson’s disease: prevalence and occurrence before motor symptoms. J Neurol 2013;260:1332-8.
23.Braak H, de Vos RA, Bohl J, Del Tredici K. Gastric alpha-synuclein immunoreactive inclusions in Meissner’s and Auerbach’s plexuses in cases staged for Parkinson’s disease-related brain pathology. Neurosci Lett 2006; 396: 67-72.
24.Bloch A, Probst A, Bissig H, Adams H, Tolnay M. Alpha-synuclein pathology of the spinal and peripheral autonomic nervous system in neurologically unimpaired elderly subjects. Neuropathol Appl Neurobiol 2006; 32:284-95.
25.Cersosimo MG, Benarroch EE. Autonomic involvement in Parkinson’s disease: pathology, pathophysiology, clinical features and possible peripheral biomarkers. J Neurol Sci 2012;313:57-63.
26.Lebouvier T, Chaumette T, Paillusson S, Duyckaerts C, Bruley des Varannes S, Neunlist M, et al. The second brain and Parkinson’s disease. Eur J Neurosci 2009;30:735-41.
27.Cersosimo MG, Benarroch EE. Neural control of the gastrointestinal tract: implications for Parkinson disease. Mov Disord 2008; 23:1065-75.
28.Rhee SH, Pothoulakis C, Mayer EA. Principles and clinical implications of the brain-gut-enteric microbiota axis. Nat Rev Gastroenterol Hepatol 2009;6: 306-14.
29.Grenham S, Clarke G, Cryan JF, Dinan TG. Brain-gut-microbe communication in health and disease. Front Physiol 2011; 2:94.
30.Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain and behavior: mechanisms & amp; therapeutic potential. Adv Exp Med Biol 2014; 817: 373-403.
31.Mayer EA, Tillisch K, Gupta A. Gut/brain axis and the microbiota. J Clin Invest 2015;125:926-38.
32.Pfeiffer RF. Gastrointestinal dysfunction in Parkinson’s disease. Parkinsonism Relat Disord 2011;17:10-5.
33.Noyce AJ, Bestwick JP, Silveira-Moriyama L, Hawkes CH, Giovannoni G, Lees AJ, & Schrag A. Meta-analysis of early non-motor features and risk factors for Parkinson disease. Ann Neurol 2012; 72:893-901.
34.Poewe W. Non-motor symptoms in Parkinson’s disease. Eur J Neurol 2008; 15 Suppl 1, 14-20.
35.Cersosimo MG, & Benarroch EE. Pathological correlates of gastrointestinal dysfunction in Parkinson’s disease. Neurobiol Dis 2012; 46:559-64.
36.Forsyth CB, Shannon KM, Kordower JH, Voigt RM, Shaikh M, Jaglin JA, Estes JD, et al. Increased intestinal permeability correlates with sigmoid mucosa alpha-synuclein staining and endotoxin exposure markers in early Parkinson’s disease. PLoS One 2011; 6:e28032.
37.Devos D, Lebouvier T, Lardeux B, Biraud M, Rouaud T, Pouclet H, Coron E, Bruley des Varannes S, Naveilhan P, Nguyen JM, Neunlist M, & Derkinderen P. Colonic inflammation in Parkinson’s disease. Neurobiol Dis 2013 ;50:42-8.
38.Shannon KM, Keshavarzian A, Dodiya HB, Jakate S, & Kordower JH. Is alpha-synuclein in the colon a biomarker for premotor Parkinson’s disease? Evidence from 3 cases. Mov Disord 2012; 27:716-9.
39.Kieburtz K, Wunderle KB. Parkinson’s disease: Evidence for environmental risk factors. Mov Disord 2013; 28:8-13.
40.Savica R, Carlin JM, Grossardt BR, Bower JH, Ahlskog JE, et al. Medical records documentation of constipation preceding Parkinson disease: a case-control study. Neurol 2009; 73:1752-58.
41.Lema Tome CM, Tyson T, Rey NL, Grathwohl S, Britschgi M, Brundin P. Inflammation and alpha-synuclein’s prion-like behavior in Parkinson’s disease–is there a link?. Mol Neurobiol 2013;47:561-74.
42.Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 2010; 464:59-65.
43.Li M, Wang B, Zhang M, Rantalainen M, Wang S, Zhou H, Zhang Y, Shen J, et al. Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci USA 2008;105: 2117-22.
44.Sommer F, Backhed F. The gut microbiota–masters of host development and physiology. Nat Rev Microbiol 2013;11:227-38.
45.Abt MC, Artis D. The intestinal microbiota in health and disease: The influence of microbial products on immune cell homeostasis. Curr Opin Gastroenterol 2009;25:496-502.
46.Goldsmith JR, Sartor RB. The role of diet on intestinal microbiota metabolism: Downstream impacts on host immune function and health, and therapeutic implications. J Gastroenterol 2014;49:785-98
47.Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W, Pettersson S. Host-gut microbiota metabolic interactions. Science 2012;336:1262-67.
48.Cryan JF, Dinan TG. Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 2012; 13:701-12.
49.Tillisch K, Labus J, Kilpatrick L, Jiang Z, Stains J, Ebrat B, Guyonnet D, Legrain-Raspaud S, et al. Consumption of fermented milk product with probiotic modulates brain activity. Gastroenterol 2013; 14:1394–1401.e4. 50.Forsythe P, Kunze WA. Voices from within: Gut microbes and the CNS. Cell Mol Life Sci 2013; 70:55-69.
51.Bercik P, Denou E, Collins J, Jackson W, Lu J, Jury J, Deng Y, et al. The intestinal microbiota affect central levels of brain-derived neurotropic factor and behavior in mice. Gastroenterol 2011; 141:599-609, 609.e1-3.
52.Scheperjans F, Aho V, Pereira PA, Koskinen K, Paulin L, Pekkonen E, Haapaniemi E, et al. Gut microbiota are related to Parkinson’s disease and clinical phenotype. Mov Disord 2015; 30:350-8.
53.Jakobsson HE, Rodriguez-Pineiro AM, Schutte A, Ermund A, Boysen P, et al. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep 2015; 16:164-77.
54.Scher JU, Sczeansk A, Longman RS, Segata N, Ubeda C, Bielski C, Rostron T, Cerundolo V, Pamer EG, Abramson SB, Huttenhower C, Littman DR. Expansion of intestinal Prevotella copri correlates with enhanced susceptibility to arthritis. Elife 2013; 2:e01202.
55.Hou JK, Abraham B, El-Serag H. Dietary intake and risk of developing inflammatory bowel disease: a systematic review of the literature. Am J Gastroenterol 2011; 106:563-73.
56.Jeffery IB, O’Toole PW. Diet-microbiota interactions and their implications for healthy living. Nutrients 2013; 5:234-52.
57.Brown CT, Davis-Richardson AG, Giongo A, Gano KA, Crabb DB, Mukherjee N, Casella G, et al. Gut microbiome metagenomics analysis suggests a functional model for the development of autoimmunity for type 1 diabetes. PLoS One 2011; 6:e25792.
58.Mejia-Leon ME, Petrosino JF, Ajami NJ, Dominguez-Bello MG, de la Barca AM. Fecal microbiota imbalance in Mexican children with type 1 diabetes. Sci Re 2014; 4:3814.
59.Derkinderen P, Shannon KM, Brundin P. Gut feelings about smoking and coffee in Parkinson’s disease. Mov Disord 2014; 2:976-9.
60.Böttner M, Zorenkov D, Hellwig I, Barrenschee M, Harde J, Fricke T, Deuschl G, et al. Expression pattern and localization of alpha-synuclein in the human enteric nervous system. Neurobiol Dis 2012; 48:474-80.
61.Malek N, Swallow D, Grosset KA, Anichtchik O, Spillantini M, Grosset DG. Alpha-synuclein in peripheral tissues and body fluids as a biomarker for Parkinson’s disease - a systematic review. Acta Neurol Scand 2014; 130:59-72.
62.Kim HJ. Alpha-synuclein expression in patients with Parkinson’s disease: a clinician’s perspective. Exp Neurobiol 2013; 22:77-83.
63.Polymeropoulos MH, Lavedan C, Leroy E, Ide SE, Dehejia A, Dutra A, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science 1997; 276(5321):2045-7.
64.Micieli G, Tosi P, Marcheselli S, Cavallini A. Autonomic dysfunction in Parkinson’s disease. Neurol Sci 2003; 24 Suppl 1: S32-4.
65.Paillusson S, Clairembault T, Biraud M, Neunlist M, Derkinderen P. Activity-dependent secretion of alphasynuclein by enteric neurons. J Neurochem 2013; 125:512-7.
66.Lebouvier T, Neunlist M, Bruley des Varannes S, Coron E, DrouardA, N’Guyen JM, Chaumette T, Tasselli M, Paillusson S, Flamand M, Galmiche JP, Damier P, Derkinderen P. Colonic biopsies to assess the neuropathology of Parkinson’s disease and its relationship with symptoms. PLoS One 2010; 5:e12728.
67.Grathwohl SA, Steiner JA, Britschgi M, Brundin P. Mind the gut: secretion of α-synuclein by enteric neurons. J Neurochem 2013;125:487-90.
68.Del Tredici K, Rüb U, De Vos RA, Bohl JR, Braak H. Where does Parkinson disease pathology begin in the brain? J Neuropathol Exp Neurol 2002; 61:413-26.
69.Braak H, Rüb U, Gai WP, Del Tredici K. Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transm 2003; 110: 517-36
70.Hawkes CH, Del Tredici K, Braak H. Parkinson’s disease: a dual-hit hypothesis. Neuropathol Appl Neurobiol 2007; 33:599-614.
71.Reichmann H. View point: etiology in Parkinson’s disease. Dual hit or spreading intoxication. J Neurol Sci 2011; 310:9-11.
72.Olanow CW, Brundin P. Parkinson’s disease and alpha synuclein: is Parkinson’s disease a prion-like disorder? Mov Disord 2013;28:31-40.
73.Li JY, Englund E, Holton JL, Soulet D, Hagell P, Lees AJ, Lashley T, Quinn NP, Rehncrona S, Björklund A, Widner H, Revesz T, Lindvall O, Brundin P. Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 2008;14:501-3.
74.Kordower JH, Chu Y, Hauser RA, Freeman TB, Olanow CW. Lewy body-like pathology in long term embryonic nigral transplants in Parkinson’s disease. Nat Med 2008; 14: 504-506.
75.Natale G, Pasquali L, Paparelli A, Fornai F. Parallel manifestations of neuropathologies in the enteric and central nervous systems. Neurogastroenterol Motil 2011; 23:1056-65.
76.Zheng LF, Song J, Fan RF, Chen CL, Ren QZ, Zhang XL, Feng XY, Zhang Y, Li LS, Zhu JX. The role of the vagal pathway and gastric dopamine in the gastroparesis of rats after a 6-hydroxydopamine microinjection in the substantia nigra. Acta Physiol Oxf 2014;211:434-46.
77.Visanji NP, Marras C, Hazrati LN, Liu LW, Lang AE. Alimentary, my dear Watson? The challenges of enteric α- synuclein as a Parkinson’s disease biomarker. Mov Disord 2014;29: 444-50.
78.Beach TG, Adler CH, Sue LI, Vedders L, Lue L, White Iii CL, Akiyama H, Caviness JN, Shill HA, Sabbagh MN, Walker DG. Multi-organ distribution of phosphorylated alpha-synuclein histopathology in subjects with Lewy body disorders. Acta Neuropathol 2010;119:689-702.
79.Wakabayashi K, Takahashi H, Takeda S, Ohama E, Ikuta F. Parkinson’s disease: the presence of Lewy bodies in Auerbach’s and Meissner’s plexuses. Acta Neuropathol 1988 76:217-221.
80.Pouclet H, Lebouvier T, Coron E, Des Varannes SB, Neunlist M, Derkinderen P. A comparison between colonic submucosa and mucosa to detect Lewy pathology in Parkinson’s disease. Neurogastroenterol Motil 2012;24:e202-e205.
81.Hansen C, Li JY. Beyond α-synuclein transfer: pathology propagation in Parkinson’s disease. Trends Mol Med 2012; 18:248-55.
82.Gao HM, Zhang F, Zhou H, Kam W, Wilson B, Hong JS. Neuroinflammation and α-synuclein dysfunction potentiate each other, driving chronic progression of neurodegeneration in a mouse model of Parkinson’s disease. Environ Health Perspect 2011;119: 807-14.
83.Sanchez-Guajardo V, Tentillier N, Romero-Ramos M. The relation between α-synuclein and microglia in Parkinson’s disease: Recent developments. Neuroscience 2015; 302: 47-58.
84.Clairembault T, Leclair-Visonneau L, Neunlist M, Derkinderen P. Enteric glial cells: new players in Parkinson’s disease?. Mov Disord 2015; 30:494-8.
85.Natale G, Pasquali L, Ruggieri S, Paparelli A, Fornai F. Parkinson’s disease and the gut: a well-known clinical association in need of an effective cure and explanation. Neurogastroenterol Motil 2008; 20:741-9.
86.Fasano, N.P. Visanji, L.W. Liu, A.E. Lang, R.F. Pfeiffer. Gastrointestinal dysfunction in Parkinson's disease, Lancet Neurol 2015; 14:625-39.
87.Abbott RD, Petrovitch H, White LR, Masaki RK, Tanner CM, Curb JD, Grandinetti A, Blanchette PL, Popper JS, Ross GW. Frequency of bowel movements and the future risk of Parkinson's disease. Neurol 2001; 5:456-62.
88.Annerino DM, Arshad S, Taylor GM, Adler CH, Beach TG, Greene JG. Parkinson's disease is not associated with gastrointestinal myenteric ganglion neuron loss. Acta Neuropathol 2012; 124:665-80.
89.Corbille AG, Coron E, Neunlist M, Derkinderen P, Lebouvier T. Appraisal of the dopaminergic and noradrenergic innervation of the submucosal plexus in PD. J. Parkinson's Dis 2014; 4:571-6.
90.Wakabayashi K, Takahashi H, Takeda S, Ohama E, Ikuta F. Lewy bodies in the enteric nervous system in Parkinson's disease. Arch Histol Cytol; 1989:52 Suppl,191-4.
91.Holmqvist S, Chutna O, Bousset L, Aldrin-Kirk P, Li W. Bjorklund T, Wang ZY, Roybon L, Melki R, Li JY. Direct evidence of Parkinson pathology spread from the gastrointestinal tract to the brain in rats. Acta Neuropathol 2014; 128:805-20.
92.Greene JG. Causes and consequences of degeneration of the dorsal motor nucleus of the vagus nerve in Parkinson's disease. Antioxid Redox Signal 2014; 21:649-67.
93.Del Tredici K, W.H. Jost, Gastrointestinal dysfunction in idiopathic Parkinson's disease Der Nervenarzt 2012; 83:1282-91.
94.Clairembault T, Kamphuis W, Leclair-Visonneau L, Rolli-Derkinderen M, Coron E, Neunlist M, Hol EM, Derkinderen P. Enteric GFAP expression and phosphorylation in Parkinson's disease. J Neurochem 2014; 130:805-15.
95.Kelly LP, Carvey PM, Keshavarzian A, Shannon KM, Shaikh M, Bakay RA, Kordower JH. Progression of intestinal permeability changes and alphasynuclein expression in a mouse model of Parkinson's disease. Mov Disord 2014; 29:999-1009.
96.Keshavarzian, S.J. Green, P.A. Engen, R.M. Voigt, A. Naqib, C.B. Forsyth, E. Mutlu, K.M. Shannon. Colonic bacterial composition in Parkinson's disease. Mov Disord 2015; 30:1351-60.
97.Cassan Ei, Barichella M, Cancello R, Cavanna F, Iorio L, Cereda E, Bolliri C, et al. Increased urinary indoxyl sulfate indican: new insights into gut dysbiosis in Parkinson's disease. Park Relat Disord 2015; 21:389-93.
98.Fil R, Cano-de-la-Cuerda E, Munoz-Hellin L, Vela M, Ramiro-Gonzalez C, Fernandez-de-Las-Penas. Pain in Parkinson disease: a review of the literature. Park Relat Disord 2013; 19:285-94.
99.Baumeister AA, Anticich TG, Hawkins MF, Liter JC, Thibodeaux HF, Guillory EC. Evidence that the substantia nigra is a component of the endogenous pain suppression system in the rat. Brain Res 1988; 447:116-21.
100.Wasner G, Deuschl G. Pains in Parkinson disease many-syndromes under one umbrella. Nat Rev Neurol 2012; 8:284-94.
101.Kim YE, Jeon BS. Musculoskeletal problems in Parkinson's disease. J Neural Transm 2013; 120:537-42.
102.Snider SR, Fahn S, Isgreen WP, Cote LJ. Primary sensory symptoms in parkinsonism. Neurol 1976; 26:423-9.
103.Aguilera M, Cerda-Cuellar M, Martinez V. Antibiotic-induced dysbiosis alters host-bacterial interactions and leads to colonic sensory and motor changes in mice. Gut Microbes 2015;6(1):10-23.
104.O'Mahony SM, Felice VD, Nally K, Savignac HM,et al. Disturbance of the gut microbiota in early-life selectively affects visceral pain in adulthood without impacting cognitive or anxiety-related behaviors in male rats. Neuroscience 2014; 277:885-901.
105.Theodorou V, Ait Belgnaoui A, Agostini S, Eutamene H. Effect of commensals and probiotics on visceral sensitivity and pain in irritable bowel syndrome. Gut Microbes 2014; 5:430-6.
106.Amaral FA, Sachs D, Costa VV, Fagundes CT, Cisalpino D, Cunha TM, et al. Commensal microbiota is fundamental for the development of inflammatory pain. Proc Natl Acad Sci USA 2008; 105:2193-7.
107.Van Hemert S, Breedveld AC, Rovers JM, Vermeiden JP, Witteman BJ, Smits MG, de Roos NM. Migraine associated with gastrointestinal disorders: review of the literature and clinical implications. Front Neurol 2014; 5:241.
108.McLean MH, Dieguez D.Jr, Miller LM, Young HA. Does the microbiota play a role in the pathogenesis of autoimmune diseases? Gut 64 2015; 332-41.
109.Smilowicz An osteopathic approach to gastrointestinal disease: somatic clues for diagnosis and clinical challenges associated with Helicobacter pylori antibiotic resistance. J Am Osteopath Assoc 2013; 113(5):404-16.
110.Sachdev AH, Pimentel M. Gastrointestinal bacterial overgrowth:pathogenesis and clinical significance. Ther Adv Chronic Dis 2013; 4:223-31.
111.Kountouras J, Zavos C, Polyzos SA, Deretzi G, Vardaka E, Giartza-Taxidou E, et al. Helicobacter pylori infection and Parkinson's disease: apoptosis as an underlying common contributor. Eur J Neurol 2012;19:56.
112.Wang Y, Kasper LH. The role of microbiome in central nervous system disorders. Brain Behav Immun 2014 38:1-12.
113.O'Mahony SM, Clarke G, Borre YE, Dinan TG, Cryan JF. Serotonin, tryptophan metabolism and the brain-gutmicrobiome axis. Behav Brain Res 2015; 277:32-48.
114.Mayer EA, Savidge T, Shulman RJ. Brain-gut microbiome interactions and functional bowel disorders. Gastroenterology 2014; 146:1500-12.
115.Clarke G, Grenham S, Scully P, Fitzgerald P, Moloney RD, Shanahan F, Dinan TG, Cryan JF. The microbiomegut- brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry 2013; 18:666-73.
116.Heijtz RD, Wang S, Anuar F, Qian Y, Bjorkholm B, Samuelsson A, Hibberd ML, Forssberg F, Pettersson S. Normal gut microbiota modulates brain development and behavior. Proc Natl Acad Sci USA 2011; 108:3047-52.
117.Neufeld KM, Kang N, Bienenstock J, Foster JA. Reduced anxiety-like behavior and central neurochemical change in germ-free mice. Neurogastroenterol Motil 2010; 23:255-64.
118.Crumeyrolle-Arias V, Jaglind V, Bruneaud A, Vancasself S, et al. Absence of the gut microbiota enhances anxiety-like behavior and neuroendocrine response to acute stress in rats. Psychoneuroendocrinol 2014; 42:207-17.
119.Lyte M, Li W, Opitz N, Gaykema R, Goehler LE. Induction of anxiety-like behavior in mice during the initial stages of infection with the agent of murine colonic hyperplasia Citrobacter rodentium. Physiol Behav 2006 89:350-7.
120.Lyte M, Varcoe JJ, Bailey MT. Anxiogenic effect of subclinical bacterial infection in mice in the absence of overt immune activation. Physiol Behav 1998; 65:63-8.
121.Bercik P, Park AJ, Sinclair D, Khoshdel A, Lu J, Huang X, Deng Y, et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol Motil 2011; 23:1132-9.
122.Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA recept P.or expression in a mouse via the vagus nerve. Proc Natl Acad Sci 2011; 108:16050-5.
123.Bercik P, Verdu EP, Foster JA, Macri J, Potter M, Huang X, Malinowski P, Jackson M, et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterol 2010; 139(6):2102-12.
124.Mahony SM, Marchesi JR, Scully P, Codling C, Ceolho MA, Quigley EM, Cryan JF, Dinan TG. Early life stress alters behavior, immunity, and microbiota in rats:implications for irritable bowel syndrome and psychiatric illnesses. Biol Psychiatry 2009; 65:263-7.
125.Park AJ, Collins J, Blennerhassett PA, Ghia JE, Verdu EF, Bercik P, et al. Altered colonic function and microbiota profile in a mouse model of chronic depression. Neurogastroenterol Motil 2013; 25:733-575.
126.Dinan TG, Cryan JF. Melancholic microbes: a link between gut microbiota and depression? Neurogastroenterol. Motil 2013; 25:713-9.
127.Soczynska K, Mansur RB, Brietzke E, Swardfager W, Kennedy SH, et al. Novel therapeutic targets in depression: minocycline as a candidate treatment. Behav Brain Res 2012; 235:302-17.
128.Miyaoka T, Wake R, Furuya M, Liaury K, Ieda M, Kawakami K, et al.Minocycline as adjunctive therapy for patients with unipolar psychotic depression: an open-label study. Prog. Neuropsychopharmacol Biol Psychiatry 2012; 37:222-6.
129.Zemke D, Majid A. The potential of minocycline for neuroprotection in human neurologic disease. Clin Neuropharmacol 2004; 27:293-8.