2017, Número 4
<< Anterior Siguiente >>
Rev Hosp Jua Mex 2017; 84 (4)
Hipoglucemiantes orales para el tratamiento de diabetes mellitus tipo 2: uso y regulación en México
Rodríguez-Rivera NS, Cuautle-Rodríguez P, Molina-Guarneros JA
Idioma: Español
Referencias bibliográficas: 64
Paginas: 203-211
Archivo PDF: 232.82 Kb.
RESUMEN
De acuerdo con su mecanismo de acción, existen cinco grupos principales de hipoglucemiantes orales para el tratamiento de la diabetes mellitus tipo 2: secretagogos de insulina (sulfonilureas y glinidas), sensibilizadores a la insulina (biguanidas y tiazolidinedionas), inhibidores de α-glucosudasa, agonistas de GLP-1 e inhibidores de DPP-4. En la regulación mexicana, tanto la Norma Mexicana 015-SSA-2010 como la guía clínica contemplan el uso de estos fármacos basadas en las evidencias científicas reportadas. El cuadro básico de uso de medicamentos no concuerda por completo con los medicamentos que citan tanto la norma como las guías. Algunos fármacos que ya han sido retirados en otros países dada su evidencia de efectos adversos siguen siendo utilizados en nuestro país y considerados en el cuadro básico. No existen muchos datos respecto al costo-beneficio de los medicamentos sugeridos para el tratamiento de la diabetes mellitus tipo 2; hace falta información que fundamente la inclusión o exclusión de algunos fármacos en este esquema. Datos recientes indican que en el país existe una menor disponibilidad de medicamentos para padecimientos crónicos en el sector salud, lo que se traduce en mayor gasto para el paciente y menor control de la enfermedad. Es necesario replantear y unificar las políticas de uso y abastecimiento considerando los datos presentes en la literatura y las necesidades y condiciones de nuestra población.
REFERENCIAS (EN ESTE ARTÍCULO)
Hernández AM. Proyecto de modificación a la Norma Oficial Mexicana NOM-015-SSA2-1994, Para la prevención, tratamiento y control de la diabetes; para quedar como Norma Oficial Mexicana PROY-NOM-015-SSA2-2007, Para la prevención, tratamiento y control de la diabetes mellitus. Secretaría de Gobernación; 2008.
Hernández-Ávila M, Gutiérrez JP, Reynoso-Noverón N. Diabetes mellitus in Mexico: status of the epidemic. Salud Pública Mex 2013; 55(Suppl 2): s129-36.
Guariguata L, Whiting DR, Hambleton I, Beagley J, Linnenkamp U, Shaw JE, et al. Global estimates of diabetes prevalence for 2013 and projections for 2035. Diabetes Res Clin Pract 2014; 103(2): 137-49.
Ávila HM, Gutiérrez JP. Diabetes mellitus: la urgencia de reforzar la respuesta en políticas públicas para su prevención y control. Secretaría de Salud; 2012. p. 4.
Jiménez-Corona A, Aguilar-Salinas CA, Rojas-Martínez R, Hernández-Ávila M. Type 2 diabetes and frequency of prevention and control measures. Salud Pública Mex 2013; 55(Suppl 2): S137-43.
Glamočlija U, Jevrić-Čaušević A. Genetic polymorphisms in diabetes: influence on therapy with oral antidiabetics. Acta Pharm 2010; 60(4): 387-406.
Zárate A, Basurto L, Saucedo R, Hernández-Valencia M. Guía para seleccionar el tratamiento farmacológico en diabetes 2. Rev Med Inst Mex Seguro Soc 2010; 3(48): 293-6.
Gloyn AL, Siddiqui J, Ellard S, Mutations in the genes encoding the pancreatic beta-cell KATP channel subunits Kir6.2 (KCNJ11) and SUR1 (ABCC8) in diabetes mellitus and hyperinsulinism. Hum Mutat 2006; 27(3): 220-31.
Gribble FM, Manley SE, Levy JC. Randomized dose ranging study of the reduction of fasting and postprandial glucose in type 2 diabetes by nateglinide (A-4166). Diabetes Care 2001; 24(7): 1221-5.
Karara AH, Dunning BE, McLeod JF. The effect of food on the oral bioavailability and the pharmacodynamic actions of the insulinotropic agent nateglinide in healthy subjects. J Clin Pharmacol 1999; 39(2): 172-9.
Li J, Tian H, Li Q, Wang N, Wu T, Liu Y, et al. Improvement of insulin sensitivity and beta-cell function by nateglinide and repaglinide in type 2 diabetic patients —a randomized controlled double-blind and double-dummy multicentre clinical trial. Diabetes Obes Metab 2007; 9(4): 558-65.
Stumvoll M, Nurjhan N, Perriello G, Dailey G, Gerich JE, et al. Metabolic effects of metformin in non-insulin-dependent diabetes mellitus. N Engl J Med 1995; 333(9): 550-54.
Wu MS, Johnston P, Sheu WH, Hollenbeck CB, Jeng CY, Goldfine ID, Chen YD, et al. Effect of metformin on carbohydrate and lipoprotein metabolism in NIDDM patients. Diabetes Care 1990; 13(1): 1-8.
Sogame Y, Kitamura A, Yabuki M, Komuro S, Takano M. Transport of biguanides by human organic cation transporter OCT2. Biomed Pharmacother 2013; 67(5): 425-30.
Hussey EK, Kapur A, O’Connor-Semmes R, Tao W, Rafferty B, Polli JW, et al. Safety, pharmacokinetics and pharmacodynamics of remogliflozin etabonate, a novel SGLT2 inhibitor, and metformin when co-administered in subjects with type 2 diabetes mellitus. BMC Pharmacol Toxicol 2013; 14(1): 25.
Ikeda T, Iwata K, Murakami H. Inhibitory effect of metformin on intestinal glucose absorption in the perfused rat intestine. Biochem Pharmacol 2000; 59(7): 887-90.
Zhou G, Myers R, Li Y, Chen Y, Shen X, Fenyk-Melody J, et al. Role of AMP-activated protein kinase in mechanism of metformin action. J Clin Invest 2001; 108(8): 1167-74.
Zhou M, Xia L, Wang J. Metformin transport by a newly cloned proton-stimulated organic cation transporter (plasma membrane monoamine transporter) expressed in human intestine. Drug Metab Dispos 2007; 35(10): 1956-62.
Sogame Y, Kitamura A, Yabuki M, Komuro S. A comparison of uptake of metformin and phenformin mediated by hOCT1 in human hepatocytes. Biopharm Drug Dispos 2009; 30(8): 476-84.
Yau H, Rivera K, Lomonaco R, Cusi K. The future of thiazolidinedione therapy in the management of type 2 diabetes mellitus. Curr Diab Rep 2013; 13(3): 329-41.
Stumvoll M, Haring HU. Glitazones: clinical effects and molecular mechanisms. Ann Med 2002; 34(3): 217-24.
Mazzone T, Meyer PM, Feinstein SB, Davidson MH, Kondos GT, D’Agostino RB Sr, et al. Effect of pioglitazone compared with glimepiride on carotid intima-media thickness in type 2 diabetes: a randomized trial. JAMA 2006; 296(21): 2572-81.
Pavo I, Jermendy G, Varkonyi TT, Kerenyi Z, Gyimesi A, Shoustov S, et al. Effect of pioglitazone compared with metformin on glycemic control and indicators of insulin sensitivity in recently diagnosed patients with type 2 diabetes. J Clin Endocrinol Metab 2003; 88(4): 1637-45.
Aljabri K, Kozak SE, Thompson DM. Addition of pioglitazone or bedtime insulin to maximal doses of sulfonylurea and metformin in type 2 diabetes patients with poor glucose control: a prospective, randomized trial. Am J Med 2004; 116(4): 230-5.
Kung J, Henry RR. Thiazolidinedione safety. Expert Opin Drug Saf 2012; 11(4): 565-79.
Lincoff AM, Wolski K, Nicholls SJ, Nissen SE. Pioglitazone and risk of cardiovascular events in patients with type 2 diabetes mellitus: a meta-analysis of randomized trials. JAMA 2007; 298(10): 1180-8.
Hernandez AV, Usmani A, Rajamanickam A, Moheet A. Thiazolidinediones and risk of heart failure in patients with or at high risk of type 2 diabetes mellitus: a meta-analysis and meta-regression analysis of placebo-controlled randomized clinical trials. Am J Cardiovasc Drugs 2011; 11(2): 115-28.
Kahn SE, Haffner SM, Heise MA, Herman WH, Holman RR, Jones NP, et al. Glycemic durability of rosiglitazone, metformin, or glyburide monotherapy. N Engl J Med 2006; 355(23): 2427-43.
Mieczkowska A, Baslé MF, Chappard D, Mabilleau G. Thiazolidinediones induce osteocyte apoptosis by a G protein-coupled receptor 40-dependent mechanism. J Biol Chem 2012; 287(28): 23517-26.
Seth A, Sy V, Pareek A, Suwandhi P, Rosenwaks Z, Poretsky L, et al. Thiazolidinediones (TZDs) affect osteoblast viability and biomarkers independently of the TZD effects on aromatase. Horm Metab Res 2013; 45(1): 1-8.
Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B. Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 2007; 148(6): 2669-80.
Ali AA, Weinstein RS, Stewart SA, Parfitt AM, Manolagas SC, Jilka RL. Rosiglitazone causes bone loss in mice by suppressing osteoblast differentiation and bone formation. Endocrinology 2005; 146(3): 1226-35.
Liu L, Aronson J, Huang S, Lu Y, Czernik P, Rahman S, et al. Rosiglitazone inhibits bone regeneration and causes significant accumulation of fat at sites of new bone formation. Calcif Tissue Int 2012; 91(2): 139-48.
Li MY, Kong AW, Yuan H, Ma LT, Hsin MK, Wan IY, et al. Pioglitazone prevents smoking carcinogen-induced lung tumor development in mice. Curr Cancer Drug Targets 2012; 12(6): 597-606.
Neumann A, Weill A, Ricordeau P, Fagot JP, Alla F, Allemand H. Pioglitazone and risk of bladder cancer among diabetic patients in France: a population-based cohort study. Diabetologia 2012; 55(7): 1953-62.
Lewis JD, Ferrara A, Peng T, Hedderson M, Bilker WB, Quesenberry CP Jr, et al. Risk of bladder cancer among diabetic patients treated with pioglitazone: interim report of a longitudinal cohort study. Diabetes Care 2011; 34(4): 916-22.
FDA. FDA al 1-888-INFO-FDA (1-888-463-6332). I [Internet] [2011 Mayo 13, 2013]; Disponible en: www.fda.gov/Drugs/DrugSafety/ucm259150.htm
EMA. European Medicines Agency recommends suspension of Avandia, Avandamet and Avaglim. 2010 [Consultado el 07 Mayo 2013]; Disponible en: http://www.ema.europa.eu/ema/index.jsp?curl=pages/news_and_events/news/2010/09/news_detail_001119.jsp&murl=menus/news_and_events/news_and_events.jsp&mid=WC0b01ac058004d5c1&jsenabled=false.
Evans JL, Rushakoff RJ. Oral pharmacological agents for type 2 diabetes: oral agents, incretions and other «non-insulin» pharmacologic interventions for diabetes, In: The Endocrine Source, Diabetes Manager, E. Text, Editor; 2010.
Krentz AJ, Bailey CJ. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 2005; 65(3): 385-411.
Hakamata W, Kurihara M, Okuda H, Nishio T, Oku T. Design and screening strategies for alpha-glucosidase inhibitors based on enzymological information. Curr Top Med Chem 2009; 9(1): 3-12.
Krentz AJ, Ferner RE, Bailey CJ. Comparative tolerability profiles of oral antidiabetic agents. Drug Saf 1994; 11(4): 223-41.
Van de Laar FA, Lucassen PL, Akkermans RP, Van de Lisdonk EH, Rutten GE, Van Weel C. Alpha-glucosidase inhibitors for type 2 diabetes mellitus. Cochrane Database Syst Rev 2005; (2): CD003639.
Kreymann B, Williams G, Ghatei MA, Bloom SR. Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 1987; 2(8571): 1300-4.
Drucker DJ. Enhancing incretin action for the treatment of type 2 diabetes. Diabetes Care 2003; 26(10): 2929-40.
Derosa G, Maffioli P. Efficacy and safety profile evaluation of acarbose alone and in association with other antidiabetic drugs: a systematic review. Clin Ther 2012; 34(6): 1221-36.
DeFronzo RA, Ratner RE, Han J, Kim DD, Fineman MS, Baron AD. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 2005; 28(5): 1092-100.
Heine RJ, Van Gaal LF, Johns D, Mihm MJ, Widel MH, Brodows RG, et al. Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: a randomized trial. Ann Intern Med 2005; 143(8): 559-69.
Kendall DM, Riddle MC, Rosenstock J, Zhuang D, Kim DD, Fineman MS, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care 2005; 28(5): 1083-91.
Buse JB, , Rosenstock J, Sesti G, Schmidt WE, Montanya E, Brett JH, et al. Liraglutide once a day versus exenatide twice a day for type 2 diabetes: a 26-week randomised, parallel-group, multinational, open-label trial (LEAD-6). Lancet 2009; 374(9683): 39-47.
Raz I, Hanefeld M, Xu L, Caria C, Williams-Herman D, Khatami H; Sitagliptin Study 023 Group. Efficacy and safety of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy in patients with type 2 diabetes mellitus. Diabetologia 2006; 49(11): 2564-71.
Goldstein BJ, Feinglos MN, Lunceford JK, Johnson J, Williams-Herman DE; Sitagliptin 036 Study Group. Effect of initial combination therapy with sitagliptin, a dipeptidyl peptidase-4 inhibitor, and metformin on glycemic control in patients with type 2 diabetes. Diabetes Care 2007; 30(8): 1979-87.
Hernández AM, Norma Oficial Mexicana, NOM-015-SSA2-2010, Para la prevención, tratamiento y control de la diabetes mellitus en la atención primaria. Secretaría de Salud; 2010.
Kershenobich SD. Cuadro básico y catálogo de medicamentos. México: Diario Oficial de la Nación; 2012. p. 237.
Gil-Velázquez LE, Sil-Acosta MJ, Domínguez-Sánchez ER, Torres-Arreola LP, Medina-Chávez JH. Diagnóstico y tratamiento de la diabetes mellitus tipo 2. En: Guía Práctica Clínica GPC. México: IMSS; 2012.
IDF. International Diabetes Federation. 2013 [Consultado el 23 Abril 2013]; Disponible en: http://www.idf.org.
Díaz de Leon-Castaneda C, Altagracia-Martínez M, Kravzov-Jinich J, Cárdenas-Elizalde M del R, Moreno-Bonett C, Martínez-Núñez JM. Cost-effectiveness study of oral hypoglycemic agents in the treatment of outpatients with type 2 diabetes attending a public primary care clinic in Mexico City. Clinicoecon Outcomes Res 2012; 4: 57-65.
Arredondo A, Reyes G. Health disparities from economic burden of diabetes in middle-income countries: evidence from Mexico. PLoS One 2013; 8(7): e68443.
Wirtz VJ, Serván-Mori E, Heredia-Pi I, Dreser A, Ávila-Burgos L. Factor associated with medicines utilization and expenditure in Mexico. Salud Pública Mex 2013; 55(Suppl 2): S112-22.
Arredondo A, De Icaza E. The cost of diabetes in Latin America: evidence from Mexico. Value Health 2011, 14(5 Suppl 1): S85-8.
Altagracia MM, Kravzov-Jinich J, Moreno SM, Rubio PC, Skromne KD, Rivas CM, et al. Diabetes mellitus tipo 2: ventas de los hipoglucemiantes orales y costos de los tratamientos farmacológicos en México. Revista Mexicana de Ciencias Farmacéuticas 2007; 38(1): 23-33.
McAlister FA, Eurich DT, Majumdar SR, Johnson JA. The risk of heart failure in patients with type 2 diabetes treated with oral agent monotherapy. Eur J Heart Fail 2008; 10(7): 703-8.
Evans JM, Ogston SA, Emslie-Smith A, Morris AD. Risk of mortality and adverse cardiovascular outcomes in type 2 diabetes: a comparison of patients treated with sulfonylureas and metformin. Diabetologia 2006; 49(5): 930-6.
Hamming KS, Soliman D, Matemisz LC, Niazi O, Lang Y, Gloyn AL, et al. Coexpression of the type 2 diabetes susceptibility gene variants KCNJ11 E23K and ABCC8 S1369A alter the ATP and sulfonylurea sensitivities of the ATP-sensitive K(+) channel. Diabetes 2009; 58(10): 2419-24.