2002, Número 5
<< Anterior Siguiente >>
Gac Med Mex 2002; 138 (5)
El receptor 'pepenador' y su importancia en procesos amiloidóticos
Aguilar-Gaytán R, Mas-Oliva J
Idioma: Español
Referencias bibliográficas: 151
Paginas: 445-460
Archivo PDF: 313.08 Kb.
RESUMEN
El receptor pepenador (RPA) también conocido como “receptor scavenger” pertenece a una amplia familia de receptores que se agrupan con base en sus propiedades de unión a una serie de ligandos importantes. El RPA fue caracterizado inicialmente por su participación en el depósito del colesterol en la pared arterial durante la formación de la placa aterosclerótica. De igual forma se ha involucrado en el mecanismo de defensa del hospedero en contra de organismos patógenos infecciosos. Su estructura es un mosaico de regiones alfa hélice y dominios ricos en cisteínas. Este receptor tiene la habilidad de unir, además de lipoproteínas de baja densidad modificadas químicamente, un amplio rango de ligandos polianiónicos. Un ligando particular para el RPA es el péptido b-amiloide, el cual se ha involucrado directamente en diferentes procesos amiloidóticos. Estudios recientes realizados en nuestro laboratorio, así como los llevados a cabo por otros grupos de trabajo, consideran que la unión de este péptido al RPA activa respuestas de tipo inflamatorio con la correspondiente producción de estrés oxidativo.
REFERENCIAS (EN ESTE ARTÍCULO)
Alaupovic P, Lee DM, McConathy J. Studies on the composition and structure of plasma lipoproteins. Distribution of lipoprotein families in major density classes of normal human plasma lipoproteins. Biochim Biophys Acta 1972;260:689-707.
Mahley RW, lnnerarity TL, Rall SC Jr, Weisgraber KH. Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res 1984;25:1277-94.
Havel RJ. The formation of LDL: mechanisms and regulation. J Lipid Res, 1984; 25:1570-1576.
Scanu AM, Lagocki P, Chung J. Effect of apolipoprotein A-II on the structure of high-density lipoproteins: relationship to the activity of lecithin: cholesterol acyl transferase in vitro. Ann NY Acad Sci 1980;348:160-73.
Goldstein JL, Brown MS. Atherosclerosis and its complications: contributions from the Association of American Physicians, 1886-1986. Trans Assoc Am Physicians 1986;99:CCXXXI-CCXLVII.
Goldstein JL, Brown MS. The low-density lipoprotein pathway and its relation to atherosclerosis. Annu Rev Biochem 1977;46:897-930.
Goldstein JL, Ho YK, Basu SK, Brown MS. Binding site on macrophages that mediates uptake and degradation of acetylated low density lipoprotein, producing massive cholesterol deposition. Proc Natl Acad Sci USA 1979;76:333-7.
Goldstein JL, Anderson RG, Brown MS. Coated pits, coated vesicles, and receptor-mediated endocytosis. Nature 1979;279:679-85.
Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witztum JL. Beyond cholesterol. Modifications of low-density lipoprotein that increase its atherogenicity. N Engl J Med 1989;320:915-24.
Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 1997;272:20963-6.
Krieger M. The other side of scavenger receptors: pattern recognition for host defense. Curr Opin Lipidol 1997;8:275-80.
Hampton RY, Golenbock DT, Penman M, Krieger M, Raetz CR. Recognition and plasma clearance of endotoxin by scavenger receptors. Nature 1991;352:342-4.
Naito M, Kodama T, Matsumoto A, Doi T, Takahashi K. Tissue distribution, intracellular localization, and in vitro expression of bovine macrophage scavenger receptors. Am J Pathol 1991;39:1411-23.
Naito M, Suzuki H, Mori T, Matsumoto A, Kodama T, Takahashi K. Coexpression of type I and type II human macrophage scavenger receptors in macrophages of various organs and foam cells in atherosclerotic Iesions. Am J Pathol 1992;141:591-9.
Hughes DA, Fraser IP, Gordon S. Murine macrophage scavenger receptor: in vivo expression and non-function as receptor for macrophage adhesion in Iymphoid and Iymphoid organs. Eur J Immunol 1995;25:466-73.
Geng YJ, Hansson GK. High endothelial cells of postcapillary venules express the scavenger receptor in human peripheral Iymph nodes. Scand J Immunol 1995;42:289-96.
Gough PJ, Greaves DR, Suzuki H, Hakkinen T, Hiltunen MO, Turunen M, Herttuala SY, Kodama T, Gordon S. Analysis of macrophage scavenger receptor (SR-A) expression in human aortic atherosclerotic lesions. Arterioscler Thromb Vasc Biol 1999;19:461-71.
de ViIIiers WJ, Fraser IP, Gordon S. Cytokine and growth factor regulation of macrophage scavenger receptor expression and function. Immunol Lett 1994;43:73-9.
de Villiers WJ, Fraser IP, Hughes DA, Doyle AG, Gordon S. Macrophage-colony-stimulating factor selectively enhances macrophage scavenger receptor expression and function. J Exp Med 1994;180:705-9.
Bottalico LA, Wager RE, Agellon LB, Assoian RK, Tabas I. Transforming growth factor-beta 1 inhibits scavenger receptor activity in THP-1 human macrophages. J Biol Chem 1991;266:22866-71.
Hsu HY, Nicholson AC, Hajjar DP. Inhibition of macrophage scavenger receptor activity by tumor necrosis factor-alpha transcriptionally and post-transcriptionally regulated. J Biol Chem 1996;271:7767-73.
Geng YJ, Hansson GK. lnterferon-gamma inhibits scavenger receptor expression and foam cell formation in human monocyte-derived macrophages. J Clin lnvest 1992;89:1322-30.
Moulton KS, Semple K, Wu H, Glass CK. Cell-specific expression of the macrophage scavenger receptor gene is dependent on PU.1 and a composite AP-liets motif. Mol CeIl Biol 1994;14:4408-18.
Mietus-Snyder M, Glass CK, Pitas RE. Transcriptional activation of scavenger receptor expression in human smooth muscle cells requires AP-lIc-Jun and ClEBP beta: both AP-1 binding and JNK activation are induced by phorbol esters and oxidative stress. Arterioscler Thromb Vasc Biol 1998;18:1440-9.
Ricote M, Li AC, Willson TM, KeIly CJ, Glass CK. The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation. Nature 1998;91:79-82.
Ashkenas J, Penman M, Vasile E, Acton S, Freeman M, Krieger M. Structures and high and low affinity ligand binding properties of murine type l and type II macrophage scavenger receptors. J Lipid Res 1993;34:983-1000.
Matsumoto A, Naito M, ltakura H, Ikemoto S, Asaoka H, Hayakawa L, Kanamori H, Aburatani H, Takaku F, Suzuki H, et al. Human macrophage scavenger receptors: primary structure, expression, and localization in atherosclerotic lesions. Proc Natl Acad Sci USA 1990;87:9133-7.
Bickel PE, Freeman MW. Rabbit aortic smooth muscle cells express inducible macrophage scavenger receptor messenger RNA that is absent from endothelial cells. J Clin lnvest 1992;90:1450-7.
Emi M, Asaoka H, Matsumoto A, ltakura H, Kurihara Y, Wada Y, Kanamori H, Yazaki Y, Takahashi E, Lepert M, et al. Structure, organization, and chromosomal mapping of the human macrophage scavenger receptor gene. J Biol Chem 1993;268:2120-5.
Gough PJ, Greaves DR, Gordon S. A naturally occurring isoform of the human macrophage scavenger receptor (SR-A) gene generated by alternative splicing blocks modified LDL uptake. J Lipid Res 1998;39:531-43.
Geng YJ, Holm J, Nygren S, Bruzelius M, Stemme S, Hansson GK. Expression of the macrophage scavenger receptor in atheroma. Relationship to immune activation and the T-cell cytokine interferon- gamma. Arteroscler Thromb Vasc Biol 1995;15:1995-2002.
Kodama T, Freeman M, Rohrer L, Zabrecky J, Matsudaira P, Krieger M. Type I macrophage scavenger receptor contains alpha-helical and collagen-like coiled colis. Nature 1990;343:531-5.
Krieger M, Herz J. Structures and functions of multiligand lipoprotein receptors: macrophage scavenger receptors and LDL receptor-related protein (LRP). Annu Rev Biochem 1994;63:601-37.
Krieger M, Acton S, Ashkenas J, Pearson A, Penman M, Resnick D. Molecular flypaper, host defense, and atherosclerosis. Structure, binding properties, and functions of macrophage scavenger receptors. J Biol Chem 1993;268:4569-72.
Morimoto K, Wada Y, Hinagata J, lmanishi T, Kodama T, Doi T. Cytoplasmic domain of macrophage scavenger receptors mediates internalization and cell-surface expression. Biol Pharm Bull 1999;22:1022-6.
Cohen C, Parry DA. Alpha-helical coiled colis and bundles: how to design an alpha-helical protein. Proteins 1990;7:1-15.
Miller EJ, Gay S. The collagens: an overview and update. Methods Enzymol 1987;144:3-41.
Freeman M, Ashkenas J, Rees DJ, Kingsley DM, Copeland NG, Jenk¡ns NA, Krieger M. An ancient, highly conserved family of cysteine-rich protein domains revealed by cloning type I and type II murine macrophage scavenger receptors. Proc Natl Acad Sci USA 1990;87:8810-4.
Dejager S, Mietus-Snyder M, Friera A, Pitas RE. Dominant negative mutations of the scavenger receptor. Native receptor inactivation by expression of truncated variants. J Clin lnvest 1993;92:894-902.
Rohrer L, Freeman M, Kodama T, Penman M, Krieger M. Coiled-coil fibrous domains mediate ligand binding by macrophage scavenger receptor type II. Nature 1990;343:570-2.
Freeman M, Ekkel Y, Rohrer L, Penman M, Freedman NJ, Chisolm GM, Krieger M. Expression of type l and type II bovine scavenger receptors in Chinese hamster ovary cells: lipid droplet accumulation and nonreciprocal cross competition by acetylated and oxidized low density lipoprotein. Proc Natl Acad Sci USA 1991;88:4931-5.
Ottnad E, Via DP, Frubis J, Sinn H, Friedrich E, Ziegler R, Dresel HA. Differentiation of binding sites on reconstituted hepatic scavenger receptors using oxidized low-density lipoprotein. Biochem J 1992;281(Pt 3):745-51.
Penman M, Lux A, Freedman NJ, Rohrer L, Ekkel Y, McKinstry H, Resnick D, Krieger M. The type l and type II bovine scavenger receptors expressed in Chinese VXFD in the their efficient hamster ovary cells are trimeric proteins with collagenous triple helical domains comprising noncovalently associated monomers and Cys83- disulfide-linked dimers. J Biol Chem 1991;266:23985-93.
Tamminen M, Mottino G, Qiao JH, Breslow JL, Frank JS. Ultrastructure of early lipid accumulation in ApoE-deficient mice. Arterioscler Thromb Vasc Biol 1999;19:847-53.
Ross R. The pathogenesis of atherosclerosis: a perspective for the 1990s Nature 1993;362:801-9.
Yla-Herttuala S, Palinski W, Rosenfeld ME, Parthasarathy S, Carew TE, Butler S, Witztum JL, Steinberg D. Evidence for the presence of oxidatively modified low density lipoprotein in atherosclerotic lesions of rabbit and man. J Clin lnvest 1989;84:1086-95.
Goldstein JL, Ho YK, Brown MS, lnnerarity TL, Mahley RW. Cholesteryl ester accumulation in macrophages resulting from receptor-mediated uptake and degradation of hypercholesterolemic canine beta- very low density lipoproteins J Biol Chem 1980;255:1839-48.
Suzuki H, Kurihara Y, Takeya M, Kamada N, Kataoka M, Jishage K, Ueda O, Sakaguchi H, Higashi T, Suzuki T, Takashima Y, Kawabe Y, Cynshi O, Wada Y, Honda M, Kurihara H, Aburatani H, Doi T, Matsumoto A, Azuma S, Noda T, Toyoda Y, ltakura H, Yazaki Y, Kodama T, et al. A role for macrophage scavenger receptors in atherosclerosis and susceptibility to infection. Nature 1997;386:292-6.
Freeman MW. Scavenger receptors in atherosclerosis. Curr Opin Hematol 1997;4:41-7.
Steinbrecher UP. Receptors for oxidized low density lipoprotein. Biochim Biophys Acta 1999;1436: 279-98.
Van Berkel TJ, Van Velzen A, Kruijt JK, Suzuki H, Kodama T. Uptake and catabolism of modified LDL in scavenger-receptor class A type I/II knock-out mice. Biochem J 1998;331(Pt 1):29-35.
Henriksen T, Mahoney EM, Steinberg D. Enhanced macrophage degradation of low density lipoprotein previously incubated with cultured endothelial cells: recognition by receptors for acetylated low density Iipoproteins. Proc Natl Acad Sci USA 1981;78:6499-503.
Hakamata H, Miyazaki A, Sakai M, Sakamoto YI, Horiuchi S. Cytotoxic effect of oxidized low density lipoprotein on macrophages. J Atheroscler Thromb 1998;5:66-75.
Parthasarathy S, Fong LG, Otero D, Steinberg D. Recognition of solubilized apoproteins from delipidated, oxidized low density lipoprotein (LDL) by the acetyl-LDL receptor. Proc Natl Acad Sci USA 1987;84:537-40.
Bird DA, Gillotte KL, Horkko S, Friedman P, Dennis EA, Witztum JL, Steinberg D. Receptors for oxidized Iow-density lipoprotein on elicited mouse peritoneal macrophages can recognize both the modified lipid moieties and the modified protein moieties: implications with respect to macrophage recognition of apoptotic cells. Proc Natl Acad Sci USA 1999;96:6347-52.
Nagy L, Tontonoz P, Alvarez JG, Chen H, Evans RM. Oxidized LDL regulates macrophage gene expression through ligand activation of PPARgamma. Cell 1998;93:229-40.
Tontonoz P, Nagy L, Alvarez JG, Thomazy VA, Evans RM. PPARgamma promotes monocyte-macrophage differentiation and uptake of oxidized LDL. Cell 1998;93:241-52.
Ricote, M, Huang J, Fajas L, Li A, Welch J, Najib J, Witztum JL, Auwerx J, Palinski W, Glass CK. Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized Iow density lipoprotein. Proc Natl Acad Sci USA 1998;95:7614-9.
De Kimpe SJ, Anggard EE, Carrier EJ. Reactive oxygen species regulate macrophage scavenger receptor type II but not type II, in the human monocytic cell line THP-1. Mol Pharmacol 1998;53:107-82.
Han CY, Park SY, Pak YK. Role of endocytosis in the transactivation of nuclear factor-kappaB by oxidized Iow-density lipoprotein. Biochem J 2000;350 Pt 3:829-37.
Yang X. Oxidized Iow density lipoproteins alter macrophage lipid uptake, apoptosis, viability and nitric oxide synthesis. J Nutr 1996;126(4 Suppl):1072S-5S.
Hodis HN, Kramsch DM, Avogaro P, Bittolo-Bon G, Cazzolato G, Hwang J, Peterson H, Sevanian A. Biochemical and cytotoxic characteristics of an in vivo circulating oxidized low density lipoprotein (LDL-). J Lipid Res 1994;35:669-77.
Chiti F, Webster P, Taddei N, Clark A, Stefani M, Ramponi G, Dobson CM. et al. Designing conditions for in vitro formation of amyloid protofilaments and fibrils. Proc Natl Acad Sci USA 1999;96:3590-4.
Eanes ED, Glenner GG. X-ray diffraction studies on amyloid filaments. J Histochem Cytochem 1968;16:673-7.
Glenner GG. Amyloid deposits and amyloidosis. The beta-fibril loses (first of two parts). N Engl J Med 1980;302:1283-92.
Glenner GG. Amyloid deposits and amyloidosis: the beta-fibrilloses (second of two parts). N Engl J Med 1980;302: 1333-43.
Lansbury PT. Evolution of amyloid: what normal protein folding may tell us about fibrillogenesis and disease. Proc Natl Acad Sci USA 1999;96:3342-4.
Sunde M, Blake C. The structure of amyloid fibrils by electron microscopy and X-ray diffraction. Adv Protein Chem 1997;50:123-59.
Kelly JW. Alternative conformations of amyloidogenic proteins govern their behavior. Curr Opin Struct Biol 1996;6:11-7.
Teplow DB. Structural and kinetic features of amyloid beta-protein fibrillogenesis. Amyloid 1998;5:121-42.
Rochet JC, Lansbury PT. Amyloid fibrillogenesis: themes and variations. Curr Opin Struct Biol 2000;10:60-8.
Buxbaum JN, Tagoe CE. The genetics of the amyloidoses. Annu Rev Med 2000;51:543-69.
Westermark P, Araki S, Benson MD, Cohen AS, Frangione B, Masters CL, Saraiva MJ, Sipe JD, Husby G, Kyle RA, Selkoe D. Nomenclature of amyloid fibril proteins. Report from the meeting of the International Nomenclature Committee on Amyloidosis, August 8-9, 1998. Part 1. Amyloid 1999;6:63-6.
Levy-Lahad E, Wasco W, Roorkaj P, Romano DM, Oshima J, Pettingell WH, Yu CE, Jondro PD, Schmidt SD, Wang K, et al. Candidate gene for the chromosome 1 familial Alzheimer’s disease locus. Science 1995;269:973-7.
Goldfarb LG, Brown P. The transmissible spongiform encephalopathies. Annu Rev Med 1995;46:57-65.
Saraiva MJ, Birken S, Costa PP, Goodman DS. Family studies of the genetic abnormality in transthyretin (prealbumin) in Portuguese patients with familial amyloidotic polyneuropathy. Ann NY Acad Sci 1984;435:86-100.
Selkoe DJ. The molecular pathology of Alzheimer’s disease. Neuron 1991;6:487-98.
Glenner GG, Wong CW. Alzheimer’s disease: initial report of the purification and characterization of a novel cerebrovascular amyloid protein. Biochem Biophys Res Commun 1984;120:885-90.
Gandy S, Greengard P. Processing of Alzheimer A beta-amyloid precursor protein: cell biology, regulation, and role in Alzheimer's disease. lnt Rev Neurobiol 1994;36:29-50.
Selkoe DJ. The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer’s disease. Trends Cell Biol 1998;8:447-53.
Kang J, Lemaire HG, Unterbeck A, Salbaum JM, Masters CL, Grzeschik KH, Multhaup G, Beyreuther K, Muller-Hill B. The precursor of Alzheimer’s disease amyloid A4 protein resembles a cell-surface receptor. Nature 1987;325:733-6.
Rockenstein EM, McConlogue L, Tan H, Power M, Masliah E, Mucke L. Levels and alternative splicing of amyloid beta protein precursor (APP) transcripts in brains of APP transgenic mice and humans with Alzheimer’s disease. J Biol Chem 1995;270:28257-67.
Haass C, Selkoe DJ. Cellular processing of beta-amyloid precursor protein and the genesis of amyloid beta-peptide. Cell 1993;75:1039-42.
Haass C, Schlossmacher MG, Hung AY, Vigo-Pelfrey C, Mellon A, Ostaszewski BL, Lieberburg I, Koo EH, Schenk D, Teplow DB, et al. Amyloid beta-peptide is produced by cultured cells during normal metabolism. Nature 1992;359:322-5.
Mattson MP. Cellular actions of beta-amyloid precursor protein and its soluble and fibrillogenic derivatives. Physiol Rev 1997;77:1081-132.
Busciglio J, Gabuzda DH, Matsudaira P, Yankner BA. Generation of beta-amyloid in the secretory pathway in neuronal and nonneuronal cells. Proc Natl Acad Sci USA 1993;90:2092-6.
Haass C, Hung AY, Schlossmacher MG, Oltersdoif T, Teplow DB, Selkoe DJ. Normal cellular processing of the beta-amyloid precursor protein results in the secretion of the amyloid beta peptide and related molecules. Ann NY Acad Sci 1993;695:109-16.
Milis J, Reiner PB. Regulation of amyloid precursor protein cleavage. J Neurochem 1999;72:443-60.
McLaurin J, Yang D, Yip CM, Fraser PE. Review: modulating factors in amyloid-beta fibril formation. J Struct Biol 2000;130:259-70.
Graeber MB, Streit WJ. Microglia: immune network in the CNS. Brain Pathol 1990;1:2-5
Perry VH, Gordon S. Macrophages and the nervous system. lnt Rev Cytol 1991;125:203-44.
Giulian D. Ameboid microglia as effectors of inflammation in the central nervous system. J Neurosci Res 1987;18:155-71.
Boje KM, Arora PK. Microglial-produced nitric oxide and reactive nitrogen species mediate neuronal cell death. Brain Res 1992;587:250-8.
Colton CA, Gilbert DL. Production of superoxide anions by a CNS macrophage, the microglia. FEBS Lett 1987;223:284-8.
Streit WJ. The role of microglia in brain injury. Neurotoxicology 1996;17:671-8.
Araujo DM, Cotman CW. Beta-amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer’s disease. Brain Res 1992;569:141-5.
Christie RH, M. Freeman, Hyman BT. Expression of the macrophage scavenger receptor, a multifunctional lipoprotein receptor, in microglia associated with senile plaques in Alzheimer’s disease. Am J Pathol 1996;148:399-403.
Paresce DM, Ghosh RN, Maxfleld FR. Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron 1996;17:553-65.
El Khoury J, Hickman SE, Thomas CA, Cao L, Silverstein SC, Loike JD. Scavenger receptor-mediated adhesion of microglia to beta-amyloid fibrils. Nature 1996;382:716-9.
Seubert P, Vigo-Pelfrey C, Esch F, Lee M, Dovey H, Davis D, Sinha S, Schlossmacher M, Whaley J, Swindlehurst C, et al. Isolation and quantification of soluble Alzheimer’s beta-peptide from biological fluids. Nature 1992;359:325-7.
Shoji M, Golde TE, Ghiso J, Cheung TT, Estus S, Shaffer LM, Cai XD, McKay DM, Tintner R, Frangione B, et al. Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 1992;258:126-9.
Haass C, Hung AY, Selkoe DJ. Processing of beta-amyloid precursor protein in microglia and astrocytes favours an internal localization over constitutive secretion. J Neurosci 1991;11: 3783-93.
McGeer PL, Akiyama H, Kawamata T, Yamada T, Walker DG, Ishii T. Immunohistochemical localization of beta-amyloid precursor protein sequences in Alzheimer and normal brain tissue by light and electron microscopy. J Neurosci Res 1992;31:428-42.
Iwatsubo T, Saldo TC, Mann DM, Lee VM, Trojanowski JQ. Full-length amyloid-beta (1-42(43)) and amino-terminally modified and truncated amyloid-beta 42(43) deposit in diffuse plaques. Am J Pathol 1996;149:1823-30.
Bianca VD, Dusi S, Bianchini E, Dal Pra I, Rossi F. Beta-Amyloid activates the O-2 forming NADPH oxidase in microglia, monocytes, and neutrophils. A possible inflammatory mechanism of neuronal damage in Alzheimer’s disease. J Biol Chem 1999;274:15493-9.
Janciauskiene S, Wright HT, Lindgren S. Fibrillar Alzheimer’s amyloid peptide Abeta(1-42) stimulates low density lipoprotein binding and cell association, free radical production and cell cytotoxicity in PC12 cells. Neuropeptides 1999;33:510-6.
Yankner BA, Mesulam MM. Seminars in medicine of the Beth Israel Hospital, Boston. beta-Amyloid and the pathogenesis of Alzheimer’s disease. N Engl J Med 1991;325:1849-57.
SeIkoe DJ. Normal and abnormal biology of the beta-amyloid precursor protein. Annu Rev Neurosci 1994;17:489-517.
Iversen LL, Mortishire-Smith RJ, Pollack SJ, Shearman MS. The toxicity in vitro of beta-amyloid protein. Biochem J 1995;311(Pt 1): 1-16.
Hardy J. Amyloid, the presenilins and Alzheimer’s disease. Trends Neurosci 1997;20:154-9.
Chung H, Brazil Ml, lrizarry MC, Hyman BT, Maxfield FR. Uptake of fibrillar beta-amyloid by microglia isolated from MSR-A (type 1 and type II) knockout mice. Neuroreport 2001;12:1151-4.
Ard MD, Cole GM, Wei J, Mehrle AP, Fratkin JD. Scavenging of Alzheimer’s amyloid beta-protein by microglia in culture. J Neurosci Res 1996;43:190-202.
Yankner BA. The pathogenesis of Alzheimer’s disease. Is amyloid beta-protein the beginning or the end? Ann NY Acad Sci 2000;924:26-8.
Huang F, Buttini M, Wyss-Coray I, McConlogue L, Kodama T, Pitas RE, Mucke L. Elimination of the class A scavenger receptor does not affect amyloid plaque formation or neurodegeneration in transgenic mice expressing human amyloid protein precursors. Am J Pathol 1999;155:1741-7.
Hensley K, Carney JM, Mattson MP, Aksenova M, Harris M, Wu JF, Floyd RA, Butterfield DA. A model for beta-amyloid aggregation and neurotoxicity based on free radical generation by the peptide: relevance to Alzheimer's disease. Proc Natl Acad Sci USA 1994;91:3270-4.
Mattson MP, Barger SW, Cheng B, Lieberburg I, Smith-Swintosky VL, Rydel RE. beta-Amyloid precursor protein metabolites and loss of neuronal Ca2+ homeostasis in Alzheimer’s disease. Trends Neurosci 1993;16:409-14.
Meda L, Cassatella MA, Szendrei GI, Otvos L Jr, Baron P, Villalba M, Ferrari D, Rossi F. Activation of microglial cells by beta-amyloid protein and interferon- gamma. Nature 1995;374;647-50.
Klegeris A, Walker DG, McGeer DL. Activation of macrophages by Alzheimer beta amyloid peptide. Biochem Biophys Res Commun 1994;199:984-91.
McDonald DR, Brunden KR, Landreth GE. Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J Neurosci 1997;17: 2284-94.
Mahley RW. Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. Science 1988;240:622-30.
Mahley RW, Ji ZS. Remnant lipoprotein metabolism: key pathways involving cell-surface heparan sulfate proteoglycans and apolipoprotein E. J Lipid Res 1999;40:1-16.
Segrest JP, Garber DW, Brouiliette CG, Harvey SC, Anantharamaiah GM. The amphipathic alpha helix: a multifunctional structural motif in plasma apolipoproteins. Adv Protein Chem 1994;45;303-69.
Weisgraber KH. Apolipoprotein E: structure-function relationships. Adv Protein Chem 1994;45:249-302.
Wisniewski T, Lalowski M, Golabek A, Vogel T, Frangione B. Is Alzheimer’s disease an apolipoprotein E amyloidosis? Lancet 1995;345:956-8.
Wetterau JR, Aggerbeck LP, Raúl SC Jr, Weisgraber KH. Human apolipoprotein E: in aqueous solution. I. Evidence for two structural domains. J Biol Chem 1988;263:6240-8.
Aggerbeck LP, Wetterau JR, Weisgraber KH, Wu CS, Lindgren FT. Human apolipoprotein E: in aqueous solution. II. Properties of the amino- and carboxyl-terminal domains. J Biol Chem 1988;263:6249-58.
Olaisen B, Teisberg P, Gedde-Dahl T Jr. The locus for apolipoprotein E (apoE) is linked to the complement component C3 (C3) locus on chromosome 19 in man. Hum Genet 1982;62:233-6.
Rall SC Jr, Weisgraber KH, lnnerarity TL, Mahley RW. Structural basis for receptor binding heterogeneity of apolipoprotein E from type III hyperlipoproteinemic subjects. Proc Natl Acad Sci USA 1982;79:4696-700.
Rail SC Jr, Weisgraber KH, Mahley RW. Human apolipoprotein E. The complete amino acid sequence. J Biol Chem 1982;257:4171-8.
Weisgraber KH, Innerarity TL, Mahley RW. Abnormal lipoprotein receptor-binding activity of the human E apoprotein due to cysteine-arginine interchange at a single site. J Biol Chem 1982;257:2518-21.
Dong LM, Weisgraber KH. Human apolipoprotein E4 domain interaction. Arginine 61 and glutamic acid 255 interact to direct the preference for very low density lipoproteins. J Biol Chem 1996;271:19053-7.
Rebeck GW, Reiter JS, Strickland DK, Hyman BT. Apolipoprotein E in sporadic Alzheimer’s disease: aIlelic variation and receptor interactions. Neuron 1993;11:575-80.
Pitas RE, Boyles JK, Lee SH, Hul D, Weisgraber KH. Lipoproteins and their receptors in the central nervous system. Characterization of the Iipoproteins in cerebrospinal fluid and identification of apolipoprotein B,E(LDL) receptors in the brain. J Biol Chem 1987;262:14352-60.
Basu SK, Brown MS, Ho YK, Havel RJ, Goldstein JL. Mouse macrophages synthesize and secrete a protein resembling apolipoprotein E. Proc Natl Acad Sci USA 1981;78:7545-9.
Boyles JK, Pitas RE, Wilson E, Mahley RW, Taylor JM. Apolipoprotein E associated with astrocytic glia of the central nervous system and with nonmyelinating glia of the peripheral nervous system. J Clin Invest 1985;76:1501-13.
Ignatius MJ, Gebicke-Harter PJ, Skene JH, Schilling JW, Weisgraber KH, Mahley RW, Shooter EM. Expression of apolipoprotein E during nerve degeneration and regeneration. Proc Natl Acad Sci USA 1986;83:1125-9.
Snipes GJ, McGuire CB, Norden JJ, Freeman JA. Nerve injury stimulates the secretion of apolipoprotein E by nonneuronal cells. Proc Natl Acad Sci USA 1986;83:1130-4.
Laskowitz DT, Goel S, Bennett: ER, Matthew WD. Apolipoprotein E suppresses glial cell secretion of TNF alpha. J Neuroimmunol 1997;76:70-4.
Miyata M, Smith JD. Apolipoprotein E alIele-specific antioxidant activity and effects on cytotoxicity by oxidative insults and beta-amyloid peptides. Nat Genet 1996;14:55-61.
Dunne DW, Resnick D, Greenberg J, Krieger M, Joiner KA. The type I macrophage scavenger receptor binds to Gram-positive bacteria and recognizes lipoteichoic acid. Proc Natl Acad Sci USA 1994;91:1863-7.
Greenberg JW, Fischer W, Joiner KA. Influence of Iipoteichoic acid structure on recognition by the macrophage scavenger receptor. lnfect lmmun 1996;64:3318-25.
Platt N, Suzuki H, Kurihara Y, Kodama T, Gordon S. Role for the class A macrophage scavenger receptor in the phagocytosis of apoptotic thymocytes in vitro. Proc Natl Acad Sci USA 1996;93:12456-60.
Haworth R, PIatt N, Keshav S, Hughes D, Darley E, Suzuki H, Kurlhara Y, Kodama T, Gordon S. The macrophage scavenger receptor type A is expressed by activated macrophages and protects the host against lethal endotoxic shock. J Exp Med 1997;186:1431-9.
Pearson AM. Scavenger receptors in innate immunity. Curr Opin Immunol 1996;8:20-8.
Sambrano GR, Parthasarathy S, Steinberg D. Recognition of oxidatively damaged erythrocytes by a macrophage receptor with specificity for oxidized low density lipoprotein. Proc Natl Acad Sci USA 1994;91:3265-9.
Fadok VA, Savill JS, Haslett C, Bratton DL, Doherty DE, Campbell PA, Henson PM. Different populations of macrophages use either the vitronectin receptor or the phosphatidylserine receptor to recognize and remove apoptotic cells. J Immunol 1992;149:4029-35.
Fraser I, Hughes D, Gordon S. Divalent cation-independent macrophage adhesion inhibited by monoclonal antibody to murine scavenger receptor. Nature 1993;364:343-6.
Hughes DA, Fraser IP, Gordon S. Murine M phi scavenger receptor: adhesion function and expression. Immunol Lett 1994;43:7-14.
Phillips RD, Arnoid K, Innerarity T. Platelet secretory products inhibit lipoprotein metabolism in macrophages. Nature 1985;316:746-748.
Mas-Oliva J, Arnold K, Wagner W, Phillips D, Pitas R, Innerarity T. Isolation and characterization of a platelet-derived macrophage-binding proteoglycan. J Biol Chem 1994;269: 10177-10183.
Santiago-Garcia J, Mas-Oliva J, Innerarity T, Pitas R. Secreted forms of amyloid- b-precursor protein are Iigands for the class A scavenger receptor. J Biol Chem 2001;276:30665-61.