2014, Número 1
<< Anterior Siguiente >>
Rev Educ Bioquimica 2014; 33 (1)
La Homeostasis de las Auxinas y su Importancia en el Desarrollo de Arabidopsis Thaliana
Garay-Arroyo A, de la Paz SM, García-Ponce B, Álvarez-Buylla ER, Gutiérrez C
Idioma: Español
Referencias bibliográficas: 36
Paginas: 13-22
Archivo PDF: 735.71 Kb.
RESUMEN
Las auxinas son hormonas que participan durante todo el ciclo de vida de las plantas y son particularmente interesantes ya que se distribuyen diferencialmente dentro de los tejidos lo que da lugar a diferentes procesos morfogenéticos. Una pregunta relevante acerca de las mismas es: ¿cómo es que la misma molécula puede inducir proliferación, alargamiento y diferenciación en distintos momentos y tejidos durante el desarrollo? Los gradientes de auxinas se establecen, principlamente, por medio del transporte polar, la síntesis y la inactivación de formas bioactivas y la función de las mismas es el resultado de una regulación compleja que incluye: 1) La cantidad de auxina biológicamente activa dentro de los tejidos que esta dada por la expresión diferencial de los genes, tanto en tiempo como en espacio, que codifican para receptores, transportadores y aquellos que participan en la síntesis de las auxinas; 2) La capacidad de formar tanto homo como heterodímeros de las proteínas que participan en la vía de transducción de señales lo cual aumenta la combinatoria de las mismas y, por lo tanto, la regulación de la expresión genética en respuesta a auxinas; 3) La localización dinámica y polar dentro de la membrana plasmática de algunos de los transportadores de auxinas lo cual permite que el flujo de las mismas se ajuste a diferentes condiciones de crecimiento; 4) Finalmente, la cantidad libre de auxinas que se modifica por conjugación y por compartamentalización. La comprensión de como estos procesos se acoplan para dar una respuesta diferencial de células y tejidos es uno de los principales retos actuales en el desarrollo de las plantas.
REFERENCIAS (EN ESTE ARTÍCULO)
Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005-1016. [ Links ]
Ljung K (2013) Auxin metabolism and homeostasis during plant development. Development 140:943-950. [ Links ]
Sauer M, Robert S, Kleine-Vehn J (2013) Auxin: simply complicated. J Exp Bot 64:2565-2577. [ Links ]
Tanaka H, Dhonukshe P, Brewer PB, Friml J (2006) Spatiotemporal asymmetric auxin distribution: a means to coordinate plant development. Cell Mol Life Sci 63:2738-2754. [ Links ]
Normanly J (2010) Approaching cellular and molecular resolution of auxin biosynthesis and metabolism. Cold Spring Harb Perspect Biol 2:a001594:1-19. [ Links ]
Finet C, Jaillais Y (2012) Auxology: when auxin meets plant evo-devo. Dev Biol 369:19-31. [ Links ]
Taiz L, Zeiger E (2002) Fisiología Vegetal (volumen 2) Synauer Associates Inc Bercelona, España ISBN 978-84-8021-601-2. 1338 pp. [ Links ]
Tromas A, Perrot-Rechenmann C (2010) Recent progress in auxin biology. C R Biol 333:297-306. [ Links ]
Woodward AW, Bartel B (2005) Auxin: regulation, action, and interaction. Ann Bot 95:707-735. [ Links ]
Tao Y, Ferrer JL, Ljung K, Pojer F, Hong F, Long JA, Li L, Moreno JE, Bowman ME, Ivans LJ, Cheng Y, Lim J, Zhao Y, Ballare CL, Sandberg G, Noel JP, Chory J (2008) Rapid synthesis of auxin via a new tryptophan-dependent pathway is required for shade avoidance in plants. Cell 133:164-176. [ Links ]
Stepanova AN, Robertson-Hoyt J, Yun J, Benavente LM, Xie DY, Dolezal K, Schlereth A, Jürgens G, Alonso JM (2008) TAA1-mediated auxin biosynthesis is essential for hormone crosstalk and plant development. Cell 133:177-191. [ Links ]
Purgatto E, Lajolo FM, do Nascimento JR, Cordenunsi BR (2001) Inhibition of beta-amylase activity, starch degradation and sucrose formation by indole-3-acetic acid during banana ripening. Planta 212:823-828. [ Links ]
Chaoui A, El Ferjani E (2005) Effects of cadmium and copper on antioxidant capacities, lignification and auxin degradation in leaves of pea (Pisum sativum L.) seedlings. C R Biol 328:23-31. [ Links ]
Normanly J (1997) Auxin metabolism. Physiol Plant 100:431-442. [ Links ]
Bajguz A, Piotrowska A (2009) Conjugates of auxin and cytokinin. Phytochemistry 70:957-969. [ Links ]
Robert HS, Friml J (2009) Auxin and other signals on the move in plants. Nat Chem Biol 5:325-332. [ Links ]
Swarup R, Péret B (2012) AUX/LAX family of auxin influx carriers-an overview. Front Plant Sci 3:1-11. [ Links ]
Swarup R, Wells D, Bennett MJ (2013) Root gravitropism In: Roots: The Hidden half IV Edition. Editor: Eshel A & Beeckman T CRC Press. Londres, Inglaterra. 848 pp. [ Links ]
Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A (2010) Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 18:927-937. [ Links ]
Mravec J, Skůpa P, Bailly A, Hoyerová K, Krecek P, Bielach A, Petrásek J, Zhang J, Gaykova V, Stierhof YD, Dobrev PI, Schwarzerová K, Rolcík J, Seifertová D, Luschnig C, Benková E, Zazímalová E, Geisler M, Friml J (2009) Subcellular homeostasis of phytohormone auxin is mediated by the ER-localized PIN5 transporter. Nature 459:1136-1140. [ Links ]
Ding Z, Wang B, Moreno I, Duplakova N, Simon S, Carraro N, Reemmer J, Pencik A, Chen X, Tejos R, Skupa P, Pollmann S, Mravec J, Petrasek J, Zazimalova E, Honys D, Rolcik J, Murphy A, Orellana A, Geisler M, Friml J (2012) ER-localized auxin transporter PIN8 regulates auxin homeostasis and male gametophyte development in Arabidopsis. Nat Commun 3:1-9. [ Links ]
Cazzonelli CI, Vanstraelen M, Simon S, Yin K, Carron-Arthur A, Nisar N, Tarle G, Cuttriss AJ, Searle IR, Benkova E, Mathesius U, Masle J, Friml J, Pogson BJ (2013) Role of the Arabidopsis PIN6 auxin transporter in auxin homeostasis and auxin-mediated development. PLoS One. 8:e70069 1-14. [ Links ]
Löfke C, Luschnig C, Kleine-Vehn J (2013) Posttranslational modification and trafficking of PIN auxin efflux carriers. Mech Dev 130:82-94. [ Links ]
Vieten A, Vanneste S, Wisniewska J, Benkova E, Benjamins R, Beeckman T, Luschnig C, Friml J (2005) Functional redundancy of PIN proteins is accompanied by auxin-dependent cross-regulation of PIN expression. Development 132:4521-4531. [ Links ]
Rigas S, Ditengou FA, Ljung K, Daras G, Tietz O, Palme K, Hatzopoulos P (2013) Root gravitropism and root hair development constitute coupled developmental responses regulated by auxin homeostasis in the Arabidopsis root apex. New Phytol 197:1130-1141. [ Links ]
Bandyopadhyay A, Blakeslee JJ, Lee OR, Mravec J, Sauer M, Titapiwatanakun B, Makam SN, Bouchard R, Geisler M, Martinoia E, Friml J, Peer WA, Murphy AS (2007) Interactions of PIN and PGP auxin transport mechanisms. Biochem Soc Trans 35:137-141. [ Links ]
Greenham K, Santner A, Castillejo C, Mooney S, Sairanen I, Ljung K, Estelle M. (2011) The AFB4 auxin receptor is a negative regulator of auxin signaling in seedlings. Curr Biol. 21:520-525. [ Links ]
Paponov IA, Teale W, Lang D, Paponov M, Reski R, Rensing SA, Palme K (2009) The evolution of nuclear auxin signaling. BMC Evol Biol 9:1-16. [ Links ]
Bargmann BO, Vanneste S, Krouk G, Nawy T, Efroni I, Shani E, Choe G, Friml J, Bergmann DC, Estelle M, Birnbaum KD (2013) A map of cell type-specific auxin responses. Mol Syst Biol 9:1-13. [ Links ]
Garay-Arroyo A, De La Paz Sánchez M, García-Ponce B, Azpeitia E, Alvarez-Buylla ER (2012) Hormone symphony during root growth and development. Dev Dyn 241:1867-1885. [ Links ]
Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, Bennett M, Traas J, Friml J & Kuhlemeier C. (2003) Regulation of phyllotaxis by polar auxin transport. Nature 426: 255-260. [ Links ]
Moreno-Risueño MA, Van Norman JM, Moreno A, Zhang J, Shnert SE, Benfey PN (2010) Oscillating Gene Expression Determines Competence for Periodic Arabidopsis Root Branching. Science 329: 1306-1311. [ Links ]
Lavenus J, Goh T, Roberts I, Guyomarc'h S, Lucas M, De Smet I, Fukaki H, Beeckman T, Bennett M, Laplaze L (2013) Lateral root development in Arabidopsis: fifty shades of auxin. Trends in Plant Science 18: 450-458. [ Links ]
Laskowski M (2013) Lateral root initiation is a probabilistic event whose frecuency is set by fluctuating levels of auxin response. J Exp Bot 64: 2609-2017. [ Links ]
Park WJ, Kriechbaumer V, Möller A, Piotrowski M, Meeley RB, Gierl A, Glawischnig E (2003) The Nitrilase ZmNIT2 converts indole-3-acetonitrile to indole-3-acetic acid. Plant Physiol 133:794-802. [ Links ]
Normanly J, Grisafi P, Fink GR, Bartel B (1997) Arabidopsis mutants resistant to the auxin effects of indole-3-acetonitrile are defective in the nitrilase encoded by the NIT1 gene. Plant Cell 9:1781-90. [ Links ]