2017, Número 3
<< Anterior Siguiente >>
Salud Mental 2017; 40 (3)
An integrative overview of the cannabinergic system and mental health
Prospéro GOE, Rueda OPE, Amancio BO, Ruiz CAE, Méndez DM
Idioma: Ingles.
Referencias bibliográficas: 64
Paginas: 119-127
Archivo PDF: 472.02 Kb.
RESUMEN
Antecedentes. El sistema de endocannabinoides (eCBs) es uno de los sistemas moduladores más ampliamente
expresados en el cerebro. Se compone de receptores expresados en la membrana citoplasmática
(CB1 y CB2) y en la membrana mitocondrial (CB1) y ligandos endógenos conocidos como endocannabinoides,
como anandamida, 2AG y oleamida. El CB1 se ha encontrado en neuronas excitadoras e inhibidoras,
en las membranas pre- y pos-sináptica, en varias áreas cerebrales como el hipocampo, el estriado dorsal y
ventral, y en la amígdala y la corteza prefrontal. El eCBs se ha relacionado con la regulación del aprendizaje
y la memoria, del estado afectivo, del equilibrio energético, del sueño y del proceso de la adicción a las drogas.
Objetivo. Integrar la información existente sobre el eCBs y su función sobre los procesos cerebrales
y la salud mental.
Método. Revisión de la información de relevancia básica y clínica obtenida de revistas
científicas indexadas (PubMed/Medline, Scopus).
Resultados. Se describe de manera concisa información
de interés básico y clínico de la investigación sobre el eCBs relacionada con la función del sistema nervioso
central.
Discusión y conclusión. En la actualidad, el estudio del eCBs es indispensable debido a su
potencial terapéutico. El desarrollo de fármacos que afecten este sistema puede ser clínicamente útil para
controlar diferentes enfermedades debilitantes. Ésta es un área de interés para la comunidad científica y los
proveedores de salud.
REFERENCIAS (EN ESTE ARTÍCULO)
Alger, B. E. (2002). Retrograde signaling in the regulation of synaptic transmission: Focus on endocannabinoids. Progress in Neurobiology, 68(4), 247-286. doi:10.1016/S0301-0082(02)00080-1
Arenos, J. D., Musty, R. E., & Bucci, D. J. (2006). Blockade of cannabinoid CB1 receptors alters contextual learning and memory. European Journal of Pharmacology, 539(3), 177-183. doi:10.1016/j.ejphar.2006.04.017
Azad, S. C., Eder, M., Marcicano, G., Lutz, B., Zieglgänsberger, W., & Rammes, G. (2003). Activation of the Cannabinoid Receptor Type 1 Decreases Glutamatergic and GABAergic Synaptic Transmission in the Lateral Amygdala of the Mouse. Learning & Memory, 10(2), 116-128. doi:10.1101/lm.53303
Berding, G., Schneider, U., Gielow, P., Buchert, R., Donnerstag, F., Brandau, W., … & Müller-Vahl, K. (2006). Feasibility of Central Cannabinoid CB1 Receptor Imaging with [124I]AM281 PET Demonstrated in a Schizophrenic Patient. Psychiatry Research-Neuroimaging, 147(2), 249-256. doi:10.1016/j.pscychresns. 2006.02.002
Bisogno, T., Ligresti, A., & di Marzo, V. (2005). The endocannabinoid signalling system: Biochemical aspects. Pharmacology, Biochemistry and Behavior, 81, 224-238. doi:10.1016/j.pbb.2005.01.027
Bisogno, T., & Maccarrone, M. (2014). Endocannabinoid signaling and its regulation by nutrients. BioFactors, 40(4), 373-380. doi:10.1002/biof.1167
Burns, H. D., Van Laere, K., Sanabria-Bohórquez, S., Hamill, T. G., Bormans, G., Eng, W. S., … & Hargreaves, R. J. (2007). [18F]MK-9470, a positron emission tomography (PET) tracer for in vivo human PET brain imaging of the cannabinoid- 1 receptor. Proceedings of the National Academy of Sciences of the United States of America, 104(23), 9800-9805. doi:10.1073/pnas.0703472104
Cadas, H., di Tomaso, E., & Piomelli, D. (1997). Occurrence and biosynthesis of endogenous cannabinoid precursor, N-arachidonoyl phosphatidylethanolamine, in rat brain. Journal of Neuroscience, 17(4), 1226-1242.
Carlson, G., Wang, Y., & Alger, B. E. (2002). Endocannabinoids facilitate the induction of LTP in the hippocampus. Nature Neuroscience, 5(8), 723-724. doi:10.1038/nn879
Ceccarini, J., Kuepper, R., Kemels, D., van Os, J., Henquet, C., & van Laere, K. (2015). [18F]MK-9470 PET measurement of cannabinoid CB1 receptor availability in chronic cannabis users. Addiction Biology, 20(2), 357-367. doi:10.1111/adb.12116
Chen, J., Marmur, R., Pulles, A., Paredes, W., & Gardner, E. L. (1993). Ventral tegmental microinjection of delta9-tetrahydrocannabinol enhances ventral tegmental somatodendritic dopamine levels but not forebrain dopamine levels: evidence for local neural action by marijuana’s psychoactive ingredient. Brain Research, 621(1), 65-70. doi:10.1016/0006-8993(93)90298-2
Comings, D. E. (1998). Polygenic inheritance and micro/minisatellites. Molecular Psychiatry, 3, 21-31.
Cravatt, B. F., Saghatelian, A., Hawkins, E. G., Clement, A. B., Bracey, M. H., & Lichtman, A. H. (2004). Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proceedings of the National Academy of Sciences of the United States of America, 101(29), 10821-10826. doi:10.1073/pnas.0401292101
Devane, W. A., Dysarz, F. A., Johnson, M. R., Melvin, L. S., & Howlett, A. C. (1988). Determination and characterization of a cannabinoid receptor in rat brain. Molecular Pharmacology, 34(5), 605-613.
Devane, W. A., Hanus, L., Breuer, A., Pertwee, R. G., Stevenson, L. A., Griffin, G., … & Mechoulam, R. (1992). Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science, 258(5090), 1946-1949. doi:10.1126/ science.1470919
Egertová, M., Giang, D. K., Cravatt, B. F., & Elphick, M. R. (1998). A new perspective on cannabinoid signalling: complementary localization of fatty acid amide hydrolase and the CB1 receptor in rat brain. Proceedings. Biological Sciences/ The Royal Society, 265(1410), 2081-2085. doi:10.1098/rspb.1998.0543
Eggan, S., Hashimoto, T., & Lewis, D. (2008). Reduced cortical cannabinoid 1 receptor messenger RNA and protein expression in schizophrenia. Psychiatry Research-Neuroimaging, 65(7), 772-784.
Ferdinand, R. F., Sondeijker, F., van der Ende, J., Selten, J. P., Huizink, A., & Verhulst, F. C. (2005). Cannabis use predicts future psychotic symptoms, and vice versa. Addiction, 100(5), 612-618. doi:10.1111/j.1360-0443.2005.01070.x
Gaoni, Y., & Mechoulam, R. (1971). The isolation and structure of delta-1-tetrahydrocannabinol and other neutral cannabinoids from hashish. Journal of the American Chemical Society, 93(1), 217-224. doi:10.1021/ja00730a036
Gerdeman, G., & Lovinger, D. M. (2008). CB1 Cannabinoid receptor inhibits synaptic release of glutamate in rat dorsolateral striatum. Journal of Neurophysiology, 85(1), 468-471.
Gessa, G. L., Casu, M. A., Carta, G., & Mascia, M. S. (1998). Cannabinoids decrease acetylcholine release in the medial-prefrontal cortex and hippocampus, reversal by SR 141716A. European Journal of Pharmacology, 355(2), 119-124. doi:10.1016/S0014-2999(98)00486-5
Giuffrida, A., Leweke, F. M., Gerth, C. W., Schreiber, D., Koethe, D., Faulhaber, J., … & Piomelli, D. (2004). Cerebrospinal anandamide levels are elevated in acute schizophrenia and are inversely correlated with psychotic symptoms. Neuropsychopharmacology, 29(11), 2108-2114. doi:10.1038/sj.npp.1300558
Giuffrida, A., Parsons, L. H., Kerr, T. M., de Fonseca, F. R., Navarro, M., & Piomelli, D. (1999). Dopamine activation of endogenous cannabinoid signaling in dorsal striatum. Nature Neuroscience, 2(4), 26-30.
Hernández-Tristán, R., Arévalo, C., Canals, S., & Leret, M. L. (2000). The effects of acute treatment with Δ9-THC on exploratory behaviour and memory in the rat. Journal of Physiology and Biochemistry, 56(1), 17-24. doi:10.1007/BF03179772
Heyser, C. J., Hampson, R. E., & Deadwyler, S. A. (1993). Effects of delta-9 tetrahydrocannabinol on delayed match to sample performance in rats: alternations in short-term memory associated with changes in task specific firing of hippocampal cells. Journal of Pharmacology and Experimental Therapeutic, 264(1), 294-307.
Howlett, A. C., Breivogel, C. S., Childers, S. R., Deadwyler, S. A., Hampson, R. E., & Porrino, L. J. (2004). Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology, 47(Suppl. 1), 345-358. doi:10.1016/j.neuropharm. 2004.07.030
Jentsch, J. D., Andrusiak, E., Tran, A., Bowers Jr., M. B., & Roth, R. H. (1997). Delta9- tetrahydrocannabinol increases prefrontal cortical catecholaminergic utilization and impairs spatial working memory in the rat: blockade of dopaminergic effects with HA966. Neuropsychopharmacology, 16(6), 426-432.
Katona, I., Rancz, E. A., Acsády, L., Ledent, C., Mackie, K., Hajos, N., & Freund, T. F. (2001). Distribution of CB1 cannabinoid receptors in the amygdala and their role in the control of GABAergic transmission. The Journal of Neuroscience, 21(23), 9506-9518. doi:21/23/9506 [pii]
Katona, I., Sperlágh, B., Maglóczky, Z., Sántha, E., Köfalvi, A., Czirják, S., … & Freund, T. F. (2000). GABAergic interneurons are the targets of cannabinoid actions in the human hippocampus. Neuroscience, 100(4), 797-804. doi:10.1016/ S0306-4522(00)00286-4
Katona, I., Urbán, G. M., Wallace, M., Ledent, C., Jung, K., Piomelli, D., … & Freund, T. F. (2006). Molecular composition of the endocannabinoid system at glutamatergic synapses. Journal of Neuroscience, 26(21), 5628-5637. doi:10.1523/ JNEUROSCI.0309-06.2006
Kendall, D. A., & Yudowski, G. A. (2017). Cannabinoid receptors in the central nervous system: their signaling and roles in disease. Frontiers in Cellular Neuroscience, 10, 294. doi:10.3389/fncel.2016.00294
Khaspekov, L. G., Verca, M. S. B., Frumkina, L. E., Hermann, H., Marsicano, G., & Lutz, B. (2004). Involvement of brain-derived neurotrophic factor in cannabinoid receptor-dependent protection against excitotoxicity. European Journal of Neuroscience, 19(7), 1691-1698. doi:10.1111/j.1460-9568.2004.03285.x
Leweke, F. M., Giuffrida, A., Wurster, U., Emrich, H. M., & Piomelli, D. (1999). Elevated endogenous cannabinoids in schizophrenia. Neuroreport, 10(8), 1665- 1669. doi:10.1097/00001756-199906030-00008
Lichtman, A. H., Dimen, K. R., & Martin, B. R. (1995). Systemic or intrahippocampal cannabinoid administration impairs spatial memory in rats. Psychopharmacology, 119(3), 282-290. doi:10.1007/BF02246292
Maccarrone, M., & Finazzi-Agro, A. (2004). Anandamide hydrolase: a guardian angel of human reproduction? Trends in Pharmacological Sciences, 25(7), 353- 357. doi:10.1016/j.tips.2004.05.002
de Marchi, N. de, Petrocellis, L. de, Orlando, P., Daniele, F., Fezza, F., & di Marzo, V. (2003). Endocannabinoid signalling in the blood of patients with schizophrenia. Lipids in Health and Disease, 9(2), 5.
Marichal-Cancino, B., Fajardo-Valdéz, A., Ruiz-Contreras, A., Méndez-Díaz, M., & Prospéro-García, O. (2016). Advances in the physiology of GPR55 in the central nervous system. Current Neuropharmacology, 14(999), 1-1. doi:10.2174/1 570159X14666160729155441
Marsicano, G., Wotjak, C. T., Azad, S. C., Bisogno, T., Rammes, G., Cascio, M. G., … & Lutz, B. (2002). The endogenous cannabinoid system controls extinction of aversive memories. Nature, 418(6897), 530-534. doi:10.1038/nature00839
Martínez-Gras, I., Hoenicka, J., Ponce, G., Rodríguez-Jiménez, R., Jiménez-Arriero, M. A., Pérez-Hernandez, E., … & Rubio, G. (2006). (AAT) n repeat in the cannabinoid receptor gene, CNR1: association with schizophrenia in a Spanish population. European Archives of Psychiatry and Clinical Neuroscience, 256(7), 437-441.
Matsuda, L. A., Lolait, S. J., Brownstein, M. J., Young, A C., & Bonner, T. I. (1990). Structure of a cannabinoid receptor and functional expression of the cloned cDNA. Nature, 346(6284), 561-564. doi:10.1038/346561a0
Meier, M. H., Caspi, A., Ambler, A., Harrington, H., Houts, R., Keefe, R. S. E., … & Moffitt, T. E. (2012). Persistent cannabis users show neuropsychological decline from childhood to midlife. Proceedings of the National Academy of Sciences, 109(40), E2657-E2664. doi:10.1073/pnas.1206820109
Munro, S., Thomas, K. L., & Abu-Shaar, M. (1993). Molecular characterization of peripheral receptor for cannabinoids. Nature, 365(6441), 61.
Muñoz-Arenas, G., Paz-Bermúdez, F., Báez-Cordero, A., Caballero-Florán, R., González-Hernández, B., Florán, B., & Limón, I. D. (2015). Cannabinoid CB1 receptors activation and coactivation with D2 receptors modulate GABAergic neurotransmission in the globus pallidus and increase motor asymmetry. Synapse, 69(3), 103-114. doi:10.1002/syn.21796
Ohno-Shosaku, T., Maejima, T., & Kano, M. (2001). Endogenous cannabinoids mediate retrograde signals from depolarized postsynaptic neurons to presynaptic terminals. Neuron, 29(3), 729-738. doi:10.1016/S0896-6273(01)00247-1
Palkovits, M., Harvey-White, J., Liu, J., Kovacs, Z. S., Bobest, M., Lovas, G., … & Kunos, G. (2008). Regional distribution and effects of postmortal delay on endocannabinoid content of the human brain. Neuroscience, 152(4), 1032-1039. doi:10.1016/j.neuroscience.2008.01.034
Pamplona, F., Prediger, R., Pandolfo, P., & Takahashi, R. (2006). The cannabinoid receptor agonist WIN 55,212-2 facilitates the extinction of contextual fear memory and spatial memory in rats. Psychopharmacology, 188(4), 641-649. doi:10.1007/s00213-006-0514-0
Pamplona, F., & Takahashi, T. (2006). WIN 55212-2 impairs contextual fear conditioning through the activation of CB1 cannabinoid receptors. Neuroscience Letters, 397(1-2), 88-92. doi:10.1016/j.neulet.2005.12.026
Pettit, D. A., Harrison, M. P., Olson, J. M., Spencer, R. F., & Cabral, G. A. (1998). Immunohistochemical localization of the neural cannabinoid receptor in rat brain. Journal of Neuroscience Research, 51(3), 391-402.
Piomelli, D. (2003). The molecular logic of endocannabinoid signalling. Nature Reviews Neuroscience, 4(11), 873-884.
Pistis, M., Ferraro, L., Pira, L., Flore, G., Tanganelli, S., Luigi, G., & Devoto, P. (2002). D9-Tetrahydrocannabinol decreases extracellular GABA and increases extracellular glutamate and dopamine levels in the rat prefrontal cortex: An in vivo microdialysis study. Brain Research, 948(1), 155-158.
Rueda-Orozco, P. E., Montes-Rodriguez, C. J., Soria-Gomez, E., Méndez-Díaz, M., & Prospéro-García, O. (2008). Impairment of endocannabinoids activity in the dorsolateral striatum delays extinction of behavior in a procedural memory task in rats. Neuropharmacology, 55(1), 55-62.
Ruiz-Contreras, A., Delgado-Herrera, M., García-Vaca, P., Almeida-Rosas, G., Soria- Rodríguez, G., Soriano-Bautista, A., … & Prospéro-García, O. (2011). Involvement of the AATn polymorphism of the CNR1 gene in the efficiency of procedural learning in humans. Neuroscience Letters, 494(3), 202-206. doi:10.1016/j.neulet.2011.03.013
Ruiz, A. E., Carrillo, K., Gómez, N., Vadillo, F., Hernández, S., Carnevale, A., … & Prospéro-García, O. (2013). Working memory performance in young adults is associated to the AATn polymorphism of the CNR1 gene. Behavioural Brain Research, 236(1), 62-66. doi:10.1016/j.bbr.2012.08.031
Soria, E., Matias, I., Rueda, P. E., Cisneros, M., Petrosino, S., Navarro, L., … & Prospéro, O. (2007). Pharmacological enhancement of the endocannabinoid system in the nucleus accumbens shell stimulates food intake and increases c-Fos expression in the hypothalamus. British Journal of Pharmacology, 151(7), 1109-1116. doi:10.1038/sj.bjp.0707313
Takahashi, R. N., Pamplona, F. A., & Fernandes, M. S. (2005). The cannabinoid antagonist SR141716A facilitates memory acquisition and consolidation in the mouse elevated T-maze. Neuroscience Letters, 380(3), 270-275. doi:10.1016/j. neulet.2005.01.049
Tsou, K., Brown, S., Sañudo-Peña, M., Mackie, K., & Walker, J. (1998). Immunohistochemical distribution of cannabinoid CB1 receptors in the rat central nervous system. Neuroscience, 83(2), 393-411. doi:10.1016/S0306-4522(97)00436-3
Ujike, H., Takaki, M., Nakata, K., Tanaka, Y., Takeda, T., Kodama, M., … & Kuroda, S. (2002). CNR1, central cannabinoid receptor gene, associated with susceptibility to hebephrenic schizophrenia. Molecular Psychiatry, 7(5), 515-518.
van Laere, K., Koole, M., Sanabria Bohorquez, S. M., Goffin, K., Guenther, I., Belanger, M. J., … & Burns, H. D. (2008). Whole-body biodistribution and radiation dosimetry of the human cannabinoid type-1 receptor ligand 18F-MK-9470 in healthy subjects. Journal of Nuclear Medicine, 49(3), 439-445. doi:10.2967/ jnumed.107.047290
Varvel, S. A., Wise, L. E., Niyuhire, F., Cravatt, B. F., & Lichtman, A. H. (2007). Inhibition of fatty-acid amide hydrolase accelerates acquisition and extinction rates in a spatial memory task. Neuropsychopharmacology, 32(5), 1032-1041. doi:1301224 [pii]
10.1038/sj.npp.1301224
Vinod, K. Y., & Hungund, B. L. (2005). Endocannabinoid lipids and mediated system: implications for alcoholism and neuropsychiatric disorders. Life Sciences, 77(14), 1569-1583. doi:10.1016/j.lfs.2005.05.041
World Health Organization. (2016). The health and social effects of nonmedical cannabis use. Geneva.
Xi, Z.-X., Peng, X.-Q., Li, X., Song, R., Zhang, H., Liu, Q.-R., … & Gardner, E. L. (2011). Brain cannabinoid CB(2) receptors modulate cocaine’s actions in mice. Nature Neuroscience, 14(9), 1160-1166. doi:10.1038/nn.2874
Yeh, M. L., Selvam, R. & Levine, E. S. (2017). BDNF-induced endocannabinoid release modulates neocortical glutamatergic neurotransmission. Synapse. doi:10.1002/syn.21962
Zavitsanou, K., Garrick, T., & Huang, X. F. (2004). Selective antagonist [3H] SR141716A binding to cannabinoid cb1 receptors is increased in the anterior cingulate cortex in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 28(2), 355-360. doi:10.1016/j.pnpbp.2003.11.005.