2017, Número 2
<< Anterior Siguiente >>
An Med Asoc Med Hosp ABC 2017; 62 (2)
Uso de simuladores para entrenamiento en neurocirugía: cambio en el paradigma de entrenamiento quirúrgico
Martínez-Anda JJ, Muñoz-Romero I, Pineda-Martínez D, Avendaño-Pradel R, Domínguez-Higareda J, Alfonso-de Leo VR
Idioma: Español
Referencias bibliográficas: 32
Paginas: 106-113
Archivo PDF: 437.81 Kb.
RESUMEN
Tradicionalmente, los sistemas de entrenamiento en las diferentes áreas quirúrgicas han sido desarrollados de forma que se cubra una necesidad asistencial hospitalaria, lo que pone en segundo plano la formación académica y el desarrollo de habilidades de los médicos especialistas en entrenamiento; este paradigma ha evolucionado debido a la relevancia que ha adquirido la seguridad del paciente y la prioridad en la capacitación del personal competente. El entrenamiento en simuladores tiene un papel fundamental en esta transición y evolución de los sistemas educativos de instrucción de personal médico. Existen diversos tipos de simuladores y todos tienen el objetivo de desarrollar habilidades y competencias que permitirán al médico especialista en formación resolver de forma eficiente las situaciones que se le presenten en un escenario real al completar la curva de aprendizaje y disminuir los riesgos que el desarrollo de dicha curva implica para el paciente. En el presente trabajo se expone una revisión de los sistemas de simulación disponibles en neurocirugía y se plantea la necesidad de un centro de simulación neuroquirúrgico que cumpla con las necesidades actuales de entrenamiento de un neurocirujano competente.
REFERENCIAS (EN ESTE ARTÍCULO)
Kohn LT, Corrigan JM, Donaldson MS, editors. To err is human: building a safer health system. Washington DC, USA: National Academy Press; 1999.
El Ahmadieh TY, Aoun SG, El Tecle NE, Nanney AD, 3rd, Daou MR, Harrop J et al. A didactic and hands-on module enhances resident microsurgical knowledge and technical skill. Neurosurgery. 2013; 73 (Suppl 1): 51-56.
Colleges AoAM. Medical simulation in medical education: results of an AAMC survey 2011 [Citado 16 de noviembre 2015]. Available from: https://members.aamc.org/eweb/upload/Medical%20Simulation%20in%20Medical%20Education%20Results%20of%20an%20AAMC%20Survey.pdf
Robison RA, Liu CY, Apuzzo ML. Man, mind, and machine: the past and future of virtual reality simulation in neurologic surgery. World Neurosurg. 2011; 76 (5): 419-430.
Potts JR, 3rd. Core training in surgery: what does it need to include? Semin Vasc Surg. 2006; 19 (4): 210-213.
Dreyfus H, Dreyfus S. A five-stage model of the mental activities involved in directed skill acquisition. AFB B, editor. Washington DC, USA: US Air Force Office of Scientific Research; 1980.
Ericsson KA. An expert-performance perspective of research on medical expertise: the study of clinical performance. Med Educ. 2007; 41 (12): 1124-1130.
Choudhury N, Gelinas-Phaneuf N, Delorme S, Del Maestro R. Fundamentals of neurosurgery: virtual reality tasks for training and evaluation of technical skills. World Neurosurg. 2013; 80 (5): e9-19.
Tsuda S, Scott D, Doyle J, Jones DB. Surgical skills training and simulation. Curr Probl Surg. 2009; 46 (4): 271-370.
Windsor JA. Role of simulation in surgical education and training. ANZ J Surg. 2009; 79 (3): 127-132.
Kneebone R. Evaluating clinical simulations for learning procedural skills: a theory-based approach. Acad Med. 2005; 80 (6): 549-553.
Larsen CR, Soerensen JL, Grantcharov TP, Dalsgaard T, Schouenborg L, Ottosen C et al. Effect of virtual reality training on laparoscopic surgery: randomised controlled trial. BMJ. 2009; 338: b1802.
Bell RH Jr. Why Johnny cannot operate. Surgery. 2009; 146 (4): 533-542.
Omahen DA. The 10,000-hour rule and residency training. CMAJ. 2009; 180 (12): 1272.
(ACGME) ACfGME. Common program requirements 2011. [Citado 16 de noviembre 2015]. Available from: http://www.acgme.org/acgmeweb/Portals/0/dh_dutyhoursCommonPR07012007.pdf.
Fitts P, Posner M. Human performance. Belmont California, USA: Brooks/Cole; 1967.
Harrop J, Lobel DA, Bendok B, Sharan A, Rezai AR. Developing a neurosurgical simulation-based educational curriculum: an overview. Neurosurgery. 2013; 73 (Suppl 1): 25-29.
Gasco J, Holbrook TJ, Patel A, Smith A, Paulson D, Muns A et al. Neurosurgery simulation in residency training: feasibility, cost, and educational benefit. Neurosurgery. 2013; 73 (Suppl 1): 39-45.
Ghosh SK. Human cadaveric dissection: a historical account from ancient Greece to the modern era. Anat Cell Biol. 2015; 48 (3): 153-169.
Mavrodi A, Paraskevas G. Evolution of the paranasal sinuses’ anatomy through the ages. Anat Cell Biol. 2013; 46 (4): 235-238.
Yammine K. The current status of anatomy knowledge: where are we now? Where do we need to go and how do we get there? Teach Learn Med. 2014; 26 (2): 184-188.
Ture U, Yasargil MG, Friedman AH, Al-Mefty O. Fiber dissection technique: lateral aspect of the brain. Neurosurgery. 2000; 47 (2): 417-426; discussion 26-7.
Yasargil MG. Microsurgery: applied to neurosurgery. In: Classics T, editor. Sttutgart: Thieme; 2006.
Shurey S, Akelina Y, Legagneux J, Malzone G, Jiga L, Ghanem AM. The rat model in microsurgery education: classical exercises and new horizons. Arch Plast Surg. 2014; 41 (3): 201-208.
Schirmer CM, Elder JB, Roitberg B, Lobel DA. Virtual reality-based simulation training for ventriculostomy: an evidence-based approach. Neurosurgery. 2013; 73 (Suppl 1): 66-73.
Gallagher AG, Cates CU. Approval of virtual reality training for carotid stenting: what this means for procedural-based medicine. JAMA. 2004; 292 (24): 3024-3026.
Stredney D, Rezai AR, Prevedello DM, Elder JB, Kerwin T, Hittle B et al. Translating the simulation of procedural drilling techniques for interactive neurosurgical training. Neurosurgery. 2013; 73 (Suppl 1): 74-80.
Rosseau G, Bailes J, del Maestro R, Cabral A, Choudhury N, Comas O et al. The development of a virtual simulator for training neurosurgeons to perform and perfect endoscopic endonasal transsphenoidal surgery. Neurosurgery. 2013; 73 (Suppl 1): 85-93.
Harrop J, Rezai AR, Hoh DJ, Ghobrial GM, Sharan A. Neurosurgical training with a novel cervical spine simulator: posterior foraminotomy and laminectomy. Neurosurgery. 2013; 73 (Suppl 1): 94-99.
Roitberg B, Banerjee P, Luciano C, Matulyauskas M, Rizzi S, Kania P et al. Sensory and motor skill testing in neurosurgery applicants: a pilot study using a virtual reality haptic neurosurgical simulator. Neurosurgery. 2013; 73 (Suppl 1): 116-121.
Schirmer CM, Mocco J, Elder JB. Evolving virtual reality simulation in neurosurgery. Neurosurgery. 2013; 73 (Suppl 1): 127-137.
Martin JA, Regehr G, Reznick R, MacRae H, Murnaghan J, Hutchison C et al. Objective structured assessment of technical skill (OSATS) for surgical residents. Br J Surg. 1997; 84 (2): 273-278.