2016, Número 3
<< Anterior Siguiente >>
Biotecnol Apl 2016; 33 (3)
Asociaciones moleculares del glaucoma primario de ángulo abierto (POAG) con enfermedades comórbidas potenciales (asocioma de POAG)
Saik OV, Konovalova NA, Demenkov PS, Ivanisenko TV, Petrovskiy ED, Ivanisenko NV, Ivanoshchuk DE, Ponomareva MN, Konovalova OS, Lavrik IN, Kolchanov NA, Ivanisenko VA
Idioma: Ingles.
Referencias bibliográficas: 50
Paginas: 3201-3206
Archivo PDF: 463.82 Kb.
RESUMEN
El glaucoma es la principal causa de la pérdida irreversible de la visión, que ocurre por la muerte de las células ganglionares de la retina. El glaucoma afecta a 60 millones de personas en el mundo y la forma conocida como glaucoma primario de ángulo abierto (POAG) es una de las más frecuentes. A pesar de los abundantes estudios sobre el glaucoma, aun se comprenden poco los mecanismos moleculares y genéticos que motivan su desarrollo. Por tales razones, el propósito de este estudio consistió en predecir cuáles son las enfermedades que muestran comorbilidad con el POAG, mediante el análisis de las redes de asociación de genes que describen las interacciones entre enfermedades. Diez enfermedades mostraron un solapamiento significativo de proteínas y genes con la red asociativa del POAG (p ‹ 0.01). Ello fue posible tras el análisis de enriquecimiento de redes asociativas, construidas con el empleo del sistema
ANDSystem, a partir de 31 enfermedades para las que se había descrito comorbilidad con el POAG en la literatura científica. La comparación del POAG con 4000 enfermedades, con la ayuda del sistema
ANDSystem, mostró una representación incrementada significativa de proteínas y genes en la red asociativa de POAG para más de 100 enfermedades. El análisis de procesos biológicos en la Ontología de Genes (GO) permitió determinar la importancia de los procesos vinculados a la apoptosis y al endotelio, para la formación de condiciones de comorbilidad del POAG con el cáncer y las enfermedades cardiovasculares, entre otras.
REFERENCIAS (EN ESTE ARTÍCULO)
Jindal V. Glaucoma: an extension of various chronic neurodegenerative disorders. Mol Neurobiol. 2013;48(1):186-9.
Quigley HA. Glaucoma. Lancet. 2011;377 (9774):1367-77.
Almasieh M, Wilson AM, Morquette B, Cueva Vargas JL, Di Polo A. The molecular basis of retinal ganglion cell death in glaucoma. Prog Retin Eye Res. 2012;31(2):152-81.
Quigley HA. Neuronal death in glaucoma. Prog Retin Eye Res. 1999;18(1):39-57.
Feinstein AR. The pre-therapeutic classification of co-morbidity in chronic disease. J Chronic Dis. 1970;23(7):455-68.
Puzyrev VP. Genetic bases of human comorbidity. Genetika. 2015;51(4):491-502.
Zheng W, Rao S. Knowledge-based analysis of genetic associations of rheumatoid arthritis to inform studies searching for pleiotropic genes: a literature review and network analysis. Arthritis Res Ther. 2015;17:202.
Podkolodnaya OA, Yarkova EE, Demenkov PS, Konovalova OS, Ivanisenko VA, Kolchanov NA. Application of the ANDCell computer system to reconstruction and analysis of associative networks describing potential relationships between myopia and glaucoma. Russ J Gen Appl Res. 2011;1(1):21-8.
Piro RM. Network medicine: linking disorders. Hum Genet. 2012;131(12): 1811-20.
Lee DS, Park J, Kay KA, Christakis NA, Oltvai ZN, Barabasi AL. The implications of human metabolic network topology for disease comorbidity. Proc Natl Acad Sci USA. 2008;105(29):9880-5.
Bragina EY, Tiys ES, Freidin MB, Koneva LA, Demenkov PS, Ivanisenko VA, et al. Insights into pathophysiology of dystropy through the analysis of gene networks: an example of bronchial asthma and tuberculosis. Immunogenetics. 2014;66(7- 8):457-65.
Glotov AS, Tiys ES, Vashukova ES, Pakin VS, Demenkov PS, Saik OV, et al. Molecular association of pathogenetic contributors to pre-eclampsia (pre-eclampsia associome). BMC Syst Biol. 2015;9 Suppl 2:S4.
Ivanisenko VA, Saik OV, Ivanisenko NV, Tiys ES, Ivanisenko TV, Demenkov PS, et al. ANDSystem: an Associative Network Discovery System for automated literature mining in the field of biology. BMC Syst Biol. 2015;9 Suppl 2:S2.
Wang Y, Huang C, Zhang H, Wu R. Autophagy in glaucoma: Crosstalk with apoptosis and its implications. Brain Res Bull. 2015;117:1-9.
Liu CH, Su WW, Shie SS, Cheng ST, Su CW, Ho WJ. Association between peripheral vascular endothelial function and progression of open-angle glaucoma. Medicine (Baltimore). 2016;95(10):e3055.
Huang da W, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc. 2009;4(1):44-57.
Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal, Complex Systems. 2006;1695(5):1-9.
Johnson NL, Kemp AW, Kotz S. Univariate discrete distributions. New York: John Wiley & Sons; 2005.
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J Roy Stat Soc. Series B. 1995:289-300.
Mayazur Rahman S, Reichenbach A, Zink M, Mayr SG. Mechanical spectroscopy of retina explants at the protein level employing nanostructured scaffolds. Soft Matter. 2016;12(14):3431-41.
Muiznieks LD, Miao M, Sitarz EE, Keeley FW. Contribution of domain 30 of tropoelastin to elastic fiber formation and material elasticity. Biopolymers. 2016;105(5):267-75.
Verma S, Buchanan MR, Anderson TJ. Endothelial function testing as a biomarker of vascular disease. Circulation. 2003;108(17):2054-9.
Henry E, Newby DE, Webb DJ, O’Brien C. Peripheral endothelial dysfunction in normal pressure glaucoma. Invest Ophthalmol Vis Sci. 1999;40(8):1710-4.
Buckley C, Hadoke PW, Henry E, O’Brien C. Systemic vascular endothelial cell dysfunction in normal pressure glaucoma. Br J Ophthalmol. 2002;86(2):227-32.
Resch H, Garhofer G, Fuchsjager-Mayrl G, Hommer A, Schmetterer L. Endothelial dysfunction in glaucoma. Acta Ophthalmol. 2009;87(1):4-12.
Su WW, Cheng ST, Ho WJ, Tsay PK, Wu SC, Chang SH. Glaucoma is associated with peripheral vascular endothelial dysfunction. Ophthalmology. 2008;115(7):1173-8 e1.
Nussenblatt RB, Liu B, Wei L, Sen HN. The immunological basis of degenerative diseases of the eye. Int Rev Immunol. 2013;32(1):97-112.
Perez VL, Caspi RR. Immune mechanisms in inflammatory and degenerative eye disease. Trends Immunol. 2015;36(6):354-63.
Kamat SS, Gregory MS, Pasquale LR. The role of the immune system in glaucoma: bridging the divide between immune mechanisms in experimental glaucoma and the human disease. Semin Ophthalmol. 2016;31(1-2):147-54.
Taylor RC, Cullen SP, Martin SJ. Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol. 2008;9(3):231-41.
Pinazo-Duran MD, Zanon-Moreno V, Garcia-Medina JJ, Gallego-Pinazo R. Evaluation of presumptive biomarkers of oxidative stress, immune response and apoptosis in primary open-angle glaucoma. Curr Opin Pharmacol. 2013;13(1):98-107.
Yu H, Kim PM, Sprecher E, Trifonov V, Gerstein M. The importance of bottlenecks in protein networks: correlation with gene essentiality and expression dynamics. PLoS Comput Biol. 2007;3(4):e59.
Ozgur A, Vu T, Erkan G, Radev DR. Identifying gene-disease associations using centrality on a literature mined gene-interaction network. Bioinformatics. 2008;24(13):i277-85.
Yan Z, Zhang Q, Xu L, Wu WD, Ren WJ, Liu LH, et al. Involvement of Toll-like receptor in silica-induced tumor necrosis factor alpha release from human macrophage cell line. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi. 2010;28(6):427-9.
Wormstone IM, Tamiya S, Anderson I, Duncan G. TGF-beta2-induced matrix modification and cell transdifferentiation in the human lens capsular bag. Invest Ophthalmol Vis Sci. 2002;43(7):2301-8.
Agorastos A, Skevas C, Matthaei M, Otte C, Klemm M, Richard G, et al. Depression, anxiety, and disturbed sleep in glaucoma. J Neuropsychiatry Clin Neurosci. 2013;25(3):205-13.
Lin HC, Chien CW, Hu CC, Ho JD. Comparison of comorbid conditions between open-angle glaucoma patients and a control cohort: a case-control study. Ophthalmology. 2010;117(11):2088-95.
Shah M, Law G, Ahmed II. Glaucoma and cataract surgery: two roads merging into one. Curr Opin Ophthalmol. 2016;27(1):51-7.
Chung SD, Ho JD, Chen CH, Lin HC, Tsai MC, Sheu JJ. Dementia is associated with open-angle glaucoma: a population-based study. Eye (Lond). 2015;29(10):1340-6.
Nakamura M, Kanamori A, Negi A. Diabetes mellitus as a risk factor for glaucomatous optic neuropathy. Ophthalmologica. 2005;219(1):1-10.
Newman-Casey PA, Talwar N, Nan B, Musch DC, Stein JD. The relationship between components of metabolic syndrome and open-angle glaucoma. Ophthalmology. 2011;118(7):1318-26.
Tumosa N. Eye disease and the older diabetic. Clin Geriatr Med. 2008;24(3): 515-27, vii.
Griffith JF, Goldberg JL. Prevalence of comorbid retinal disease in patients with glaucoma at an academic medical center. Clin Ophthalmol. 2015;9:1275-84.
Zidverc-Trajkovic JJ, Pekmezovic TD, Sundic AL, Radojicic AP, Sternic NM. Comorbidities in cluster headache and migraine. Acta Neurol Belg. 2011;111(1):50-5.
Lin HC, Kang JH, Jiang YD, Ho JD. Hypothyroidism and the risk of developing open-angle glaucoma: a five-year population- based follow-up study. Ophthalmology. 2010;117(10):1960-6.
Zlateva GP, Javitt JC, Shah SN, Zhou Z, Murphy JG. Comparison of comorbid conditions between neovascular age-related macular degeneration patients and a control cohort in the medicare population. Retina. 2007;27(9):1292-9.
Foster PJ, Jiang Y. Epidemiology of myopia. Eye (Lond). 2014;28(2):202-8.
Ho JD, Hu CC, Lin HC. Open-angle glaucoma and the risk of stroke development: a 5-year population-based follow-up study. Stroke. 2009;40(8):2685-90.
Safi SZ, Qvist R, Kumar S, Batumalaie K, Ismail IS. Molecular mechanisms of diabetic retinopathy, general preventive strategies, and novel therapeutic targets. Biomed Res Int. 2014;2014:801269.
Adamiec-Mroczek J, Zajac-Pytrus H, Misiuk- Hojlo M. Caspase-dependent apoptosis of retinal ganglion cells during the development of diabetic retinopathy. Adv Clin Exp Med. 2015;24(3):531-5.