2017, Número 1
<< Anterior Siguiente >>
Rev Mex Cardiol 2017; 28 (1)
Diagnóstico de la dinámica cardiaca basado en las proporciones de entropía: Aplicación a 550 casos
Rodríguez J, Correa C, Ramírez L
Idioma: Ingles.
Referencias bibliográficas: 47
Paginas: 10-20
Archivo PDF: 388.73 Kb.
RESUMEN
Antecedentes: Se desarrolló una metodología para evaluar la dinámica cardiaca en el contexto de la teoría de los sistemas dinámicos, la probabilidad y las proporciones de la entropía, que permite establecer medidas diagnósticas, objetivas y reproducibles.
Objetivo: Desarrollar un estudio de concordancia diagnóstica para confirmar la aplicabilidad clínica de la metodología diseñada para evaluar mediante la probabilidad y las proporciones de la entropía la dinámica cardíaca del adulto.
Métodos: Se realizó un estudio ciego para analizar el comportamiento de 550 registros electrocardiográficos continuos y Holter. Para ello se tomaron los valores de la frecuencia cardiaca máxima y mínima cada hora durante 18 horas, y el número de latidos por hora, para generar un atractor numérico de cada dinámica en un mapa de retardo. Posteriormente, se calculó la frecuencia, probabilidad y relación s/k de pares ordenados de frecuencias cardiacas en tres regiones del atractor. Se calcularon proporciones de la entropía y se estableció el diagnóstico físico matemático para luego comparar los resultados obtenidos respecto al diagnóstico convencional tomado como estándar de oro.
Resultados: Los atractores numéricos generados para cada dinámica cardiaca, y cuantificados con las proporciones de la entropía, permiten hacer distinciones matemáticas precisas entre pacientes con dinámica cardiaca normal, de aquellas con diferentes grados de agudización clínica, con valores de sensibilidad y, especificidad de 100% y coeficiente
kappa de 1.
Conclusión: Se confirmó la capacidad diagnóstica y predictiva de la metodología a nivel clínico, constituyendo un método que simplifica todos los parámetros clínicos actuales y permite determinar cuantitativamente el nivel de agudización del estado cardiaco.
REFERENCIAS (EN ESTE ARTÍCULO)
Devaney R. A first course in chaotic dynamical systems theory and experiments. Reading, Massachusetts: Addison-Wesley; 1992.
Peitgen H, Jürgens H, Saupe D. Strange attractors, the locus of chaos. In: Chaos and fractals: new frontiers of science. New York: Springer-Verlag; 1992. pp. 655-768.
Calabrese JL. Ampliando las fronteras del reduccionismo. Deducción y sistemas no lineales. Psicoanálisis. 1999; 21 (3): 431-453.
Feynman RP, Leighton RB, Sands M. Probabilidad. En: Feynman RP, Leighton RB, Sands M. Física. Vol. 1. Wilmington: Addison-Wesley Iberoamericana, S. A.; 1998. pp. 6-1, 6-16.
Tolman R. Principles of statistical mechanics. New York: Dover Publications; 1979.
Feynman RP, Leighton RB, Sands M. Leyes de la termodinámica. En: Feynman RP, Leighton RB, Sands M. Física. Vol. 1. Wilmington: Addison-Wesley Iberoamericana, S. A.; 1998. pp. 44-51, 44-19.
Frodden E, Royo J. Entropía e información. Seminario Final del Curso de Termodinámica. Depto. de Física, Facultad de Ciencias, Universidad de Chile. 2004. Disponible en: http://fisica.ciencias.uchile.cl/~gonzalo/cursos/termo_II-04/seminarios/seminarios1.htm. Consultado: febrero 6 2012.
Shore J. Relative entropy, probabilistic inference and AI. 2013. Disponible en: http://arxiv.org/abs/1304.3423
Kadish A, Buxton A, Kennedy H, Knight B, Mason J, Schuger C et al. ACC/AHA clinical competence statement on electrocardiography and ambulatory electrocardiography. J Am Coll Cardiol. 2001; 38 (7): 2091-2100.
Fisch C. Evolution of the clinical electrocardiogram. J Am Coll Cardiol. 1989; 14 (5): 1127-1138.
Mason JW, Hancock EW, Saunders DE Jr, Schuger CD, Griffin JC, Kennedy HL et al. American College of Cardiology report on ECGEXAM. J Am Coll Cardiol. 1997; 29 (2): 466-468.
Voss A, Schulz S, Schroeder R, Baumert M, Caminal P. Methods derived from nonlinear dynamics for analysing heart rate variability. Philos Trans A Math Phys Eng Sci. 2009; 367 (1887): 277-296.
Goldberger AL, Rigney DR, Mietus J, Antman EM, Greenwald S. Nonlinear dynamics in sudden cardiac death syndrome: heartrate oscillations and bifurcations. Experientia. 1988; 44 (11-12): 983-987.
Goldberger AL. Is the normal heartbeat chaotic or homeostatic? News Physiol Sci. 1991; 6: 87-91.
Ivanov PC, Amaral LA, Goldberger AL, Havlin S, Rosenblum MG, Struzik ZR et al. Multifractality in human heartbeat dynamics. Nature. 1999; 399 (6735): 461-465.
Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlin Soft Matter Phys. 2005; 71 (2 Pt 1): 021906.
Norris PR, Anderson SM, Jenkins JM, Williams AE, Morris JA Jr. Heart rate multiscale entropy at three hours predicts hospital mortality in 3,154 trauma patients. Shock. 2008; 30 (1): 17-22.
Perkiömäki JS, Mäkikallio TH, Huikuri HV. Fractal and complexity measures of heart rate variability. Clin Exp Hypertens. 2005; 27 (2-3): 149-158.
Rodríguez J. Entropía proporcional de los sistemas dinámicos cardiacos: predicciones físicas y matemáticas de la dinámica cardiaca de aplicación clínica. Rev Colomb Cardiol. 2010; 17: 115-129.
Rodríguez J, Prieto S, Domínguez D, Melo M, Mendoza F, Correa C et al. Mathematical-physical prediction of cardiac dynamics using the proportional entropy of dynamic systems. J Med Med Sci. 2013; 4 (8): 370-381.
Rodríguez J, Prieto S, Correa C, Soracipa Y, Mora J, Bernal P et al. Predicciones de la entropía proporcional de la dinámica cardíaca. Rev Fac Med. 2015; 23 (2): 60-70.
Rodríguez J, Prieto S, Correa C, Soracipa Y, Aguirre G, Méndez L. Proportional entropy applied to the clinical diagnostic of cardiac dynamic: blind study with 600 Holter. The 61st Annual Conference of the Israel Heart Society in Association with the Israel Society of Cardiothoracic Surgery. 2014.
Rodríguez J, Mendoza F, Velásquez n. Clinical application to arrhythmic of entropy proportion. J Nucl Med Radiat Ther. 2015; 6 (4).
Rodríguez J, Prieto S, Bernal P, Izasa D, Salazar G, Correa C et al. Entropía proporcional aplicada a la evolución de la dinámica cardiaca. Predicciones de aplicación clínica. La emergencia de los enfoques de la complejidad en América Latina. Tomo I. Argentina: Comunidad del Pensamiento Complejo; 2015. pp. 247-264.
Rodríguez J. Mathematical law of chaotic cardiac dynamic: predictions of clinic application. J Med Med Sci. 2011; 2 (8): 1050-1059.
Rodríguez J, Correa C, Melo M, Domínguez, D, Prieto S, Cardona DM et al. Chaotic cardiac law: developing predictions of clinical application. J Med Med Sci. 2013; 4 (2): 79-84.
Rodríguez J, Prieto S, Correa C, Oliveros H, Soracipa Y, Méndez L et al. Diagnóstico físico-matemático de la dinámica cardiaca a partir de sistemas dinámicos y geometría fractal: disminución del tiempo de evaluación de la dinámica cardiaca de 21 a 16 horas. Acta Colomb Cuid Intensivo. 2016; 16 (1): 15-22.
Rodríguez J, Prieto S, Correa C, Oliveros H, Soracipa Y. Diagnóstico matemático de dinámica cardiaca y evaluación de variables hemodinámicas de Unidad de Cuidados Intensivo. Rev Cubana Invest Biomed. 2016; 35 (2): 158-173.
Rodríguez J, Prieto S, Domínguez D, Correa C, Melo M, Pardo J et al. Application of the chaotic power law to cardiac dynamics in patients with arrhythmias. Rev Fac Med. 2014; 62 (4): 539-546.
Al-Zaiti S, Carey M. The prevalence of clinical and electrocardiographic risk factors of cardiovascular death among on-duty professional firefighters. J Cardiovasc Nurs. 2015; 30 (5): 440-446.
Carey MG, Thevenin BJ. High-resolution 12-lead electrocardiograms of on-duty professional firefighters: a pilot feasibility study. J Cardiovasc Nurs. 2009; 24 (4): 261-267.
Goldberger AL, Amaral LA, Hausdorff JM, Ivanov PCh, Peng CK, Stanley HE. Fractal dynamics in physiology: alterations with disease and aging. Proc Natl Acad Sci U S A. 2002; 99 Suppl 1: 2466-2472.
Huikuri HV, Mäkikallio TH, Peng CK, Goldberger AL, Hintze U, Møller M. Fractal correlation properties of R-R interval dynamics and mortality in patients with depressed left ventricular function after an acute myocardial infarction. Circulation. 2000; 101 (1): 47-53.
Rodríguez-Velásquez J, Prieto-Bohórquez S, Flórez-Cárdenas M, Alarcón-Ávila C, López-Cruz R, Aguirre-Dávila G et al. Sistemas dinámicos cardiacos en neonatos normales: Ley caótica cardiaca neonatal. Salud, Barranquilla. 2014; 30 (3): 361-370.
Rodríguez J, Prieto S, Flórez M, Alarcón C, López R, Aguirre G et al. Physical-mathematical diagnosis of cardiac dynamic on neonatal sepsis: predictions of clinical application. J Med Med Sci. 2014; 5 (5): 102-108.
Rodríguez JO, Prieto SE, Correa C, Bernal PA, Puerta GE, Vitery S et al. Theoretical generalization of normal and sick coronary arteries with fractal dimensions and the arterial intrinsic mathematical harmony. BMC Med Phys. 2010; 10: 1.
Rodríguez J, Prieto S, Correa C, Polo F, Soracipa S, Blanco V et al. Fractal and Euclidean geometric generalization of normal and restenosed arteries. J Med Med Sci. 2013; 4 (4): 174-180.
Prieto-Bohórquez SE, Velásquez JO, Correa-Herrera SC, Soracipa-Muñoz MY. Diagnosis of cervical cells based on fractal and Euclidian geometrical measurements: Intrinsic Geometric Cellular Organization. BMC Med Phys. 2014; 14: 2.
Velásquez JO, Bohórquez SE, Herrera SC, Cajeli DD, Velásquez DM, de Alonso MM. Geometrical nuclear diagnosis and total paths of cervical cell evolution from normality to cancer. J Cancer Res Ther. 2015; 11 (1): 98-104.
Rodríguez J, Prieto S, Correa S, Mejía M, Ospino B, Munevar A et al. Simulación de estructuras eritrocitarias con base en la geometría fractal y euclidiana. Archivos de Medicina Umanizales. 2014; 14 (2): 276-284.
Rodríguez J, Prieto S, Correa C, Soracipa Y, Mora J, Forero M et al. Generalización geométrica fractal de ventriculografías izquierdas normales y con disfunción leve. Acta Med Colom. 2014; 39: 131-136.
Rodríguez JO, Prieto SE, Correa C, Pérez CE, Mora JT, Bravo J et al. Predictions of CD4 lymphocytes’ count in HIV patients from complete blood count. BMC Med Phys. 2013; 13 (1): 3.
Rodríguez J, Prieto S, Melo M, Domínguez D, Correa C, Soracipa Y et al. Predicción del número de linfocitos T CD4 en sangre periférica a partir de teoría de conjuntos y probabilidad en pacientes con VIH/SIDA. Inmunología. 2014; 33: 113-120.
Rodríguez J. Método para la predicción de la dinámica temporal de la malaria en los municipios de Colombia. Rev Panam Salud Pública. 2010; 27 (3): 211-218.
Rodríguez J. Teoría de unión al HLA clase II teorías de probabilidad combinatoria y entropía aplicadas a secuencias peptídicas. Inmunología. 2008; 27 (4): 151-166.
Rodríguez J, Prieto S, Correa C, Mendoza F, Weiz G, Soracipa Y et al. Physical mathematical evaluation of the cardiac dynamic applying the Zipf-Mandelbrot law. Journal of Modern Physics. 2015; 6: 1881-1888. Disponible en: http://dx.doi.org/10.4236/jmp.2015.613193
Rodríguez J. Dynamical systems applied to dynamic variables of patients from the Intensive Care Unit (ICU): physical and mathematical mortality predictions on ICU. J Med Med Sci. 2015; 6 (8): 209-220.