2008, Número 1
<< Anterior Siguiente >>
Rev Neurol Neurocir Psiquiat 2008; 41 (1)
Más allá del TEL y de la dislexia: otros trastornos lingüísticos de base genética
Benítez BA
Idioma: Español
Referencias bibliográficas: 149
Paginas: 21-36
Archivo PDF: 93.20 Kb.
RESUMEN
La identificación y la caracterización estructural y funcional
de los genes que aparecen mutados en trastornos
cognitivos de carácter hereditario que revisten (en principio)
un carácter exclusivamente lingüístico está contribuyendo
a una caracterización más precisa en términos moleculares
del programa de desarrollo innato responsable
de la ontogenia del “órgano del lenguaje”. Tradicionalmente
este tipo de análisis se han centrado en el denominado
trastorno específico del lenguaje (TEL) y en la
dislexia, si bien de forma progresiva se han ido describiendo
otros trastornos de esta índole. La consideración
de las características fenotípicas de los mismos, así
como la determinación de las alteraciones estructurales y
funcionales que se producen en ellos a nivel del sistema
nervioso central, ayuda a evaluar críticamente determinadas
cuestiones de interés relacionadas con los trastornos
del lenguaje y de la cognición, en particular: 1) la posibilidad
de lograr una separación precisa en términos
empíricos entre las diversas clases de disfunciones cognitivas
y, en particular, entre la cognición general y el lenguaje;
2) la idoneidad que, frente a la caracterización sindrómica,
presenta el recurso a los endofenotipos en este
tipo de análisis; o 3) el significado real de la comorbilidad
que se advierte habitualmente entre esta clase de trastornos.
Por otro lado, la consideración de las características
estructurales y funcionales de los genes cuya mutación
parece ser la causa de este tipo de trastornos sugiere
que difícilmente pueden considerarse relacionados exclusivamente
con el lenguaje, puesto que sus productos
ejercen diversas funciones en distintas zonas del sistema
nervioso (y aun del resto del organismo), y en diferentes
momentos del desarrollo.
REFERENCIAS (EN ESTE ARTÍCULO)
Chomsky NA. Rules and Representations. Oxford: Basil Blackwell; 1980.
Chomsky NA. Knowledge of language: its nature, origin and use. New York: Prager; 1986.
Jenkins L. Biolingüística. Madrid: Cambridge University Press; 2002.
Pigliucci M. Phenotypic plasticity: beyond nature and nurture. Baltimore: John Hopkins University Press; 2001.
Risch N, Merikangas KR. The future of genetic studies of complex human diseases. Science 1996; 273: 1516-7.
Stromswold K. Genetics of spoken language disorders. Hum Biol 1998; 70: 293-320.
Cardon LR, Bell JL. Association study designs for complex diseases. Nat Rev Genet 2001; 2: 91-9.
Francks C, MacPhie IL, Monaco AP. The genetic basis of dyslexia. Lancet Neurol 2002; 1: 483-90.
Leonard LB. Specific language impairment as a clinical category. Lang Speech Hear Serv Schools 1991; 22: 66-8.
Ramsay M. Communication genes clustered on 7q31. Mol Med Today 2000; 6: 380-1.
Bishop DVM, Leonard L. Speech and language impairments in children: causes, characteristics, intervention and outcome. Oxford: Oxford Psychology Press; 2001.
Leonard LB. Children with specific language impairment. Boston: MIT Press; 2002.
Ullman MT. The declarative/procedural model of lexicon and grammar. J Psycholinguist Res 2001; 30: 37-69.
Bishop DVM, Bishop SJ, Bright P, James C, Delaney T, Tallal P. Different origin of auditory and phonological processing problems in children with language impairment: evidence from a twin study. J Speech Lang Hear Res 1999; 42: 155-68.
Bishop DVM. The role of genes in the etiology of specific language impairment. J Commun Disord 2002; 35: 311-28.
Newbury DF, Bishop DV, Monaco AP. Genetic influences on language impairment and phonological short-term memory. Trends Cogn Sci 2005; 9: 528-34.
Marcus GF, Fisher SE. FOXP2 in focus: what can genes tell us about speech and language? Trends Cogn Sci 2003; 7: 257-62.
Benítez-Burraco A. FOXP2: del trastorno específico a la biología molecular del lenguaje. I. Aspectos etiológicos, neuroanatómicos, neurofisiológicos y moleculares. Rev Neurol 2005; 40: 671-82.
Vargha-Khadem F, Gadian DG, Copp A, Mishkin M. FOXP2 and the neuroanatomy of speech and language. Nat Rev Neurosci 2005; 6: 131-8.
Watkins KE, Dronkers NF, Vargha-Khadem F. Behavioral analysis of an inherited speech and language disorder: comparison with acquired aphasia. Brain 2002; 125: 452-64.
Shriberg LD, Ballard KJ, Tomblin JB, Duffy JR, Odell KH, Williams CA. Speech, prosody, and voice characteristics of a mother and daughter with a 7,13 translocation affecting FOXP2. J Speech Lang Hear Res 2006; 49: 500-25.
Bishop DVM. Genetic and environmental risks for specific language impairment in children. Philos Trans R Soc Lond, B, Biol Sci 2001a; 356: 369-80.
Bartlett CW, Flax JF, Logue MW, Vieland VJ, Bassett AS, Tallal P, et al. A major susceptibility locus for specific language impairment is located on 13q21. Am J Hum Genet 2002; 71: 45-55.
SLI Consortium. A genomewide scan identifies two novel loci involved in specific language impairment. Am J Hum Genet 2002; 70: 384-98.
Fisher SE, Lai CS, Monaco AP. Deciphering the genetic basis of speech and language disorders. Annu Rev Neurosci 2003; 26: 57-80.
SLI Consortium. Highly significant linkage to the SLI1 locus in an expanded sample of individuals affected by specific language impairment. Am J Hum Genet 2004; 74: 1225-38.
Shaywitz BA, Fletcher J, Shaywitz SE. Defining and classifying learning disabilities and attention-deficit/hyperactivity disorder. J Child Neurol 1995; 10: S50-S57.
Temple E, Poldrack RA, Protopapas A, Nagarajan S, Salz T, Tallal P, et al. Disruption of the neural response to rapid acoustic stimuli in dyslexia: evidence from functional MRI. Proc Nat Acad Sci USA 2000; 97: 13907-12.
Shaywitz SE, Shaywitz BA, Pugh KR, Fulbright RK, Constable RT, Mencl WE, et al. Functional disruption in the organization of the brain for reading in dyslexia. Proc Nat Acad Sci USA 1998; 95: 2636-41.
Olson RK, Forsberg H, Wise B. Genes, environment, and the development of orthographic skills. En: Berninger VW (ed.). The varieties of orthographic knowledge, I: theoretical and developmental issues. Dordrecht: Kluwer; 1994, p. 27-71.
Ramus F. Genes, brain, and cognition: a roadmap for the cognitive scientist. Cognition 2006; 101: 247-69.
Benítez BA. Bases moleculares de la dislexia. Revista de Neurología 2007a; 45.
Bishop DVM, Brown BB, Robson J. The relationship between phoneme discrimination, speech production, and language comprehension in cerebral-palsied individuals. J Speech Lang Hear Res 1990; 33: 210-9.
Gusella JF, MacDonald ME. Huntington’s disease: seeing the pathogenic process through a genetic lens. Trends Biochem Sci 2006; 31: 533-40.
Benítez BA. La enfermedad de Huntington: fundamentos moleculares e implicaciones para una caracterización de los mecanismos neuronales responsables del procesamiento lingüístico. Revista de Neurología (en prensa).
Ansink BJJ, Sarphatie H, Van Dongen HR. The Landau-Kleffner syndrome: case report and theoretical considerations. Neuropediatrics 1989; 20: 170-2.
McVicar KA, Shinnar S. Landau-Kleffner syndrome, electrical status epilepticus in slow wave sleep, and language regression in children. Ment Retard Dev Disabil Res Rev 2004; 10: 144-9.
Martin RC. Language processing: functional organization and neuroanatomical basis. Annu Rev Psychol 2003; 54: 55-89.
Scheffer IE, Jones L, Pozzebon M, Howell RA, Saling MM, Berkovic SF. Autosomal dominant rolandic epilepsy and speech dyspraxia: a new syndrome with anticipation. Ann Neurol 1995; 38: 633-42.
Roll P, Rudolf G, Pereira S, Royer B, Scheffer IE, Massacrier A, et al. SRPX2 mutations in disorders of language cortex and cognition. Hum Mol Genet 2006; 15: 1195-1207.
Callebaut I, Gilges D, Vigon I, Mornon JP. HYR, an extracellular module involved in cellular adhesion and related to the immunoglobulin- like fold. Protein Sci 2000; 9: 1382-90.
O’Leary JM, Bromek K, Black GM, Uhrinova S, Schmitz C, Wang X, et al. Backbone dynamics of complement control protein (CCP) modules reveals mobility in binding surfaces. Protein Sci 2004; 13: 1238-50.
Kurosawa H, Goi K, Inukai T, Inaba T, Chang KS, Shinjyo T, et al. Two candidate downstream target genes for E2A-HLF. Blood 1999; 93: 321-32.
Kuzniecky R, Andermann F, Guerrini R. Congenital bilateral perisylvian syndrome: study of 31 patients. Lancet 1993; 341: 608-12.
Villard L, Nguyen K, Cardoso C, Martin CL, Weiss AM, Sifry- Platt M, et al. A locus for bilateral perisylvian polymicrogyria maps to Xq28. Am J Hum Genet 2002; 70: 1003-8.
Levitt P. Structural and functional maturation of the developing primate brain. J Pediatr 2003; 143: S35-S45.
Gopnik M. Feature-blind grammar and dysphasia. Nature 1990; 344: 715.
Billard C, Toutain A, Loisel M-L, Gillet P, Barthez M-A, Maheut J. Genetic basis of developmental dysphasia: report of eleven familial cases in six families. Genet Counsel 1994; 5: 22-33.
Shriberg LD, Tomblin JB, McSweeny JL. Prevalence of speech delay in 6-year-old children and comorbidity with language impairment. J Speech Lang Hear Res 1999; 42: 1461-81.
Shriberg LD, Austin D. Comorbidity of speech-language disorder: Implications for a phenotype marker for speech delay. En: Paul R (ed.). Exploring the speech/language connection. Baltimore: Brookes; 1998, p. 73-118.
Stein CM, Schick JH, Taylor HG, Shriberg LD, Millard C, Kundtz- Kluge A, et al. Pleiotropic effects of a chromosome 3 locus on speech-sound disorder and reading. Am J Hum Genet 2004; 74: 283-97.
Nopola-Hemmi J, Myllyluoma B, Haltia T, Taipale M, Ollikainen V, Ahonen T, et al. A dominant gene for developmental dyslexia on chromosome 3. J Med Genet 2001; 38: 658-64.
Hannula-Jouppi K, Kaminen-Ahola N, Taipale M, Eklund R, Nopola- Hemmi J, Kaariainen H, et al. The axon guidance receptor gene ROBO1 is a candidate gene for developmental dyslexia. PLoS Genet 2005; 1: e50.
McGrath LM, Smith SD, Pennington BF. Breakthroughs in the search for dyslexia candidate genes. Trends Mol Med 2006; 12: 333-41.
Bagri A, Marin O, Plump AS, Mak J, Pleasure SJ, Rubenstein, JLR, et al. Slit proteins prevent midline crossing and determine the dorsoventral position of major axonal pathways in the mammalian forebrain. Neuron 2002; 33: 233-48.
Stein CM, Millard C, Kluge A, Miscimarra LE, Cartier KC, Freebairn LA, et al. Speech sound disorder influenced by a locus in 15q14 region. Behav Genet 2006; 36: 858-68.
Shao Y, Cuccaro ML, Hauser ER, Raiford KL, Menold MM, Wolpert CM, et al. Fine mapping of autistic disorder to chromosome 15q11-q13 by use of phenotypic subtypes. Am J Hum Genet 2003; 72: 539-48.
Cook EH, Lindgren V, Leventhal BL, Courchesne R, Lincoln A, Shulman C, et al. Autism or atypical autism in maternally but not paternally derived proximal 15q duplication. Am J Hum Genet 1997; 60: 928-34.
Schroer RJ, Phelan MC, Michaelis RC, Crawford EC, Skinner SA, Cuccaro M, et al. Autism and maternally derived aberrations of chromosome 15q. Am J Med Genet 1998; 76: 327-36.
Filipek PA, Juranek J, Smith M, Mays LZ, Ramos ER, Bocian M, et al. Mitochondrial dysfunction in autistic patients with 15q inverted duplication. Ann Neurol 2003; 53: 801-4.
Boyar FZ, Whitney MM, Lossie AC, Gray BA, Keller KL, Stalker HJ, et al. A family with a grandmaternally derived interstitial duplication of proximal 15q. Clin Genet 2001; 60: 421-30.
Kishino T, Lalande M, Wagstaff J. UBE3A/E6-AP mutations cause Angelman syndrome. Nature Genet 1997; 15: 70-3.
Alvares RL, Downing SF. A survey of expressive communication skills in children with Angelman syndrome. Am J Speech Lang Pathol 1998; 7: 14-24.
Magenis RE, Toth-Fejel S, Allen LJ, Black M, Brown MG, Budden S, et al. Comparison of the 15q deletions in Prader- Willi and Angelman syndromes: specific regions, extent of deletions, parental origin, and clinical consequences. Am J Med Genet 1990; 35: 333-49.
Robinson WP, Bottani A, Yagang X, Balakrishman J, Binkert F, Machler M, et al. Molecular, cytogenetic, and clinical investigations of Prader-Willi syndrome patients. Am J Hum Genet 1991; 49: 1219-34.
Cassidy SB, Forsythe M, Heeger S, Nicholls RD, Schork N, Benn P, et al. Comparison of phenotype between patients with Prader- Willi syndrome due to deletion 15q and uniparental disomy 15. Am J Med Genet 1997; 68: 433-40.
Butler MG, Bittel DC, Kibiryeva N, Talebizadeh Z, Thompson T. Behavioral differences among subjects with Prader-Willi syndrome and type I or type II deletion and maternal disomy. Pediatrics 2004; 113: 565-73.
Grigorenko EL, Wood FB, Meyer MS, Hart LA, Speed WC, Shuster A, et al. Susceptibility loci for distinct components of developmental dyslexia on chromosomes 6 and 15. Am J Hum Genet 1997; 60: 27-39.
Wigg KB, Couto JM, Feng Y, Anderson B, Cate-Carter TD, Macciardi F, et al. Support for EKN1 as the susceptibility locus for dyslexia on 15q21. Mol Psychiatry 2004; 9: 1111-21.
Chapman NH, Igo RP, Thomson JB, Matsushita M, Brkanac Z, Holzman T, et al. Linkage analysis of four regions previously implicated in dyslexia: confirmation of a locus on chromosome 15q. Am J Med Genet 2004; 131B: 67-75.
Prasad C, Prasad AN, Chodirker BN, Lee C, Dawson AK, Jocelyn LJ, et al. Genetic evaluation of pervasive developmental disorders: the terminal 22q13 deletion syndrome may represent a recognizable phenotype. Clin Genet 2000; 57: 103-9.
Phelan MC, Rogers RC, Saul RA, Stapleton GA, Sweet K, Mc- Dermid H, et al. 22q13 deletion syndrome. Am J Med Genet 2001; 101: 91-9.
Bonaglia MC, Giorda R, Borgatti R, Felisari G, Gagliardi C, Selicorni A, et al. Disruption of the ProSAP2 gene in a t(12;22)(q24.1;q13.3) is associated with the 22q13.3 deletion syndrome. Am J Hum Genet 2001; 69: 261-8.
Liu J, Yao F, Wu R, Morgan M, Thorburn A, Finley RL, et al. Mediation of the DCC Apoptotic Signal by DIP13a. J Biol Chem 2002; 277: 26281-5.
Bonaglia MC, Giorda R, Mani E, Aceti G, Anderlid, B-M, et al. Identification of a recurrent breakpoint within the SHANK3 gene in the 22q13.3 deletion syndrome. J Med Genet 2006; 43: 822-8.
Wilson HL, Wong ACC, Shaw SR, Tse W-Y, Stapleton GA, et al. Molecular characterisation of the 22q13 deletion syndrome supports the role of haploinsufficiency of SHANK3/PROSAP2 in the major neurological symptoms. J Med Genet 2003; 40: 575-84.
Banker G, Churchill L, Cotman CW. Proteins of the postsynaptic density. J Cell Biol 1974; 63: 456-65.
Ziff EB. Enlightening the postsynaptic density. Neuron 1997; 19: 1163-74.
Grant SG, Marshall MC, Page KL, Cumiskey MA, Armstrong JD. Synapse proteomics of multiprotein complexes: en route from genes to nervous system diseases. Hum Mol Genet 2005; 14: R225-R234.
Pocklington AJ, Cumiskey M, Armstrong JD, Grant SG. The proteomes of neurotransmitter receptor complexes form modular networks with distributed functionality underlying plasticity and behaviour. Mol Syst Biol 2006; 2: 2006-23.
Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, et al. Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 1999; 23: 569-82.
Durand CM, Betancur C, Boeckers TM, Bockmann J, Chaste P, Fauchereau F, et al. Mutations in the gene encoding the synaptic scaffolding protein SHANK3 are associated with autism spectrum disorders. Nature Genet 2007; 39: 25-7.
Vernes SC, Nicod J, Elahi FM, Coventry JA, Kenny N, Coupe AM, et al. Functional genetic analysis of mutations implicated in a human speech and language disorder. Hum Mol Genet 2006; 15: 3154-67.
Lai CS, Fisher SE, Hurst JA, Vargha-Khadem F, Monaco AP. A novel forkhead-domain gene is mutated in a severe speech and language disorder. Nature 2001; 413: 519-23.
Tan-Sindhunata G, Castedo S, Leegte B, Mulder I, van der Veen A, van der Hout AH, et al. Molecular cytogenetic characterization of a small, familial supernumerary ring chromosome 7 associated with mental retardation and an abnormal phenotype. Am J Med Genet 2000; 92: 147-52.
Velagaleti GV, Jalal SM, Kukolich MK, Lockhart LH, Tonk VS. De novo supernumerary ring chromosome 7: first report of a non-mosaic patient and review of the literature. Clin Genet 2002; 61: 202-6.
Lichtenbelt KD, Hochstenbach R, van Dam WM, Eleveld MJ, Poot M, Beemer FA. Supernumerary ring chromosome 7 mosaicism: case report, investigation of the gene content, and delineation of the phenotype. Am J Med Genet 2005; 132A: 93-100.
Somerville MJ, Mervis CB, Young EJ, Seo EJ, del Campo M, Bamforth S, et al. Severe expressive-language delay related to duplication of the Williams-Beuren locus. N Engl J Med 2005; 353: 1694-701.
Bellugi U, Lichtenberger L, Mills D, Galaburda A, Korenberg JR. Bridging cognition, the brain and molecular genetics: evidence from Williams syndrome. Trends Neurosci 1999; 22: 197-207.
Meyer G, Varoqueaux F, Neeb A, Oschlies M, Brose N. The complexity of PDZ domain-mediated interactions at glutamatergic synapses: a case study on neuroligin. Neuropharmacology 2004; 47: 724-33.
Jamain S, Quach H, Betancur C, Rastam M, Colineaux C, Gillberg IC, et al. Mutations of the X-linked genes encoding neuroligins NLGN3 and NLGN4 are associated with autism. Nat Genet 2003; 34: 27-9.
Davies AF, Mirza G, Sekhon G, Turnpenny P, Leroy F, Speleman F, et al. Delineation of two distinct 6p deletion syndromes. Hum Genet 1999; 104: 64-72.
Anderlid BM, Schoumans J, Hallqvist A, Stahl Y, Wallin A, Blennow E, et al. Cryptic subtelomeric 6p deletion in a girl with congenital malformations and severe language impairment. Eur J Hum Genet 2003; 11: 89-92.
Blixt A, Mahlapuu M, Bjursell C, Darnfors C, Johannesson T, Enerback S, et al. The two-exon gene of the human forkhead transcription factor FREAC-2 (FKHL6) is located at 6p25.3. Genomics 1998; 53: 387-90.
Hellqvist M, Mahlapuu M, Samuelsson L, Enerback S, Carlsson P. Differential activation of lung-specific genes by two forkhead proteins, FREAC-1 and FREAC-2. J Biol Chem 1996; 271: 4482-90.
Hellqvist M, Mahlapuu M, Blixt A, Enerback S, Carlsson P. The human forkhead protein FREAC-2 contains two functionally redundant activation domains and interacts with TBP and TFIIB. J Biol Chem 1998; 273: 23335-43.
Pierrou S, Hellqvist M, Samuelsson L, Enerback S, Carlsson P. Cloning and characterization of seven human forkhead proteins: binding site specificity and DNA bending. EMBO J 1994; 13: 5002-12.
Aitola M, Carlsson P, Mahlapuu M, Enerbäck S, Pelto-Huikko M. Forkhead transcription factor FoxF2 is expressed in mesodermal tissues involved in epithelio-mesenchymal interactions. Dev Dyn 2000; 218: 136-49.
Nishimura D, Swiderski RE, Alward WLM, Searby CC, Patil SR, Bennet SR, et al. The forkhead transcription factor gene FKHL7 is responsible for glaucoma phenotypes which map to 6p25. Nature Genet 1998; 19: 140-7.
Nishimura D, Searby CC, Alward WL, Walton D, Craig JE, Mackey DA, et al. A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye. Am J Hum Genet 2001; 68: 364-72.
Saleem RA, Banerjee-Basu S, Berry FB, Baxevanis AD, Walter MA. Analyses of the effects that disease-causing missense mutations have on the structure and function of the wingedhelix protein FOXC1. Am J Hum Genet 2001; 68: 627-41.
Saleem RA, Banerjee-Basu S, Berry FB, Baxevanis AD, Walter MA. Structural and functional analyses of disease-causing missense mutations in the forkhead domain of FOXC1. Hum Mol Genet 2003; 12: 2993-3005.
MacLean K, Smith J, St. Heaps L, Chia N, Williams R, Peters GB, et al. Axenfeld-Rieger malformation and distinctive facial features: clues to a recognizable 6p25 microdeletion syndrome. Am J Med Genet 2005; 132A: 381-5.
Shen Y, Luche R, Wei B, Gordon ML, Diltz CD, Tonks NK. Activation of the Jnk signaling pathway by a dual-specificity phosphatase, JSP-1. Proc Natl Acad Sci USA 2001; 98: 13613-8.
Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature 2001; 410: 37-40.
Pearson G, Robinson F, Beers Gibson T, Xu BE, Karandikar M, Berman K, et al. Mitogen-activated protein (MAP) kinase pathways: regulation and physiological functions. Endocr Rev 2001; 22: 153-83.
Grossman A, Mittrucker H-W, Nicholl J, Suzuki A, Chung S, Antonio L, et al. Cloning of human lymphocyte-specific interferon regulatory factor (hLSIRF/hIRF4) and mapping of the gene to 6p23-p25. Genomics 1996; 37: 229-33.
Mittrucker H-W, Matsuyama T, Grossman A, Kundig TM, Potter J, Shahinian A, et al. Requirement for the transcription factor LSIRF/IRF4 for mature B and T lymphocyte function. Science 1997; 275: 540-3.
Sleat DE, Gin RM, Sohar I, Wisniewski K, SkloUhlen M. Antibody- based protein atlas for expression and localization profiles in various normal human tissues and cancers. Royal Institute of Technology. School of Biotechnology. Stockholm (Sweden). http://www.proteinatlas.org/tissue_profile.php?antibody_ id=HPA002038 (consulta 03-09-07), 2007.
Shu W, Cho J, Jiang Y, Zhang M, Weisz D, Elder GA, et al. Altered ultrasonic vocalization in mice with a disruption in the Foxp2 gene. Proc Natl Acad Sci USA 2005; 102: 9643-8.
Branchi I, Santucci D, Alleva E. Ultrasonic vocalization emitted by infant rodents: a tool for assessment of neurobehavioural development. Behav Brain Res 2001; 125: 49-56.
Moskalenko S, Tong C, Rosse C, Mirey G, Formstecher E, Daviet L, et al. Ral GTPases regulate exocyst assembly through dual subunit interactions. J Biol Chem 2003; 278: 51743-8.
Sjolinder M, Uhlmann J, Ponstingl H. DelGEF, a homologue of the Ran guanine nucleotide exchange factor RanGEF, binds to the exocyst component Sec5 and modulates secretion. FEBS Lett 2002; 532: 211-5.
Lammer EJ, Scholes T, Abrams L. Autosomal recessive tetralogy of Fallot, unusual facies, communicating hydrocephalus, and delayed language development: a new syndrome? Clin Dysmorph 2001; 10: 9-13.
Joanisse M, Seidenberg M. Specific language impairment: a deficit in grammar or processing. Trends Cogn Sci 1998; 2: 240-7.
Pulvermüller F. A brain perspective on language mechanisms: from discrete neuronal ensembles to serial order. Prog Neurobiol 2002; 67: 85-111.
Dehaene S, Dupoux E, Mehler J, Cohen L, Perani D, van de Moortele P-F, et al. Anatomical variability in the cortical representation of first and second languages. Neuroreport 1997; 17: 3809-15.
Thomas C, Altenmilller E, Marchmann G, Kahrs J, Dichgans J. Language processing in aphasia: changes in lateralization patterns during recovery reflect cerebral plasticity in adults. Electroencephalogr Clin Neurophysiol 1997; 102: 86-97.
Kosik KS. Beyond phrenology, at last. Nat Rev Neurosci 2003; 4: 234-9.
Newmeyer FJ. Genetic dysphasia and linguistic theory. J Neurolinguistics 1997; 10: 47-73.
Botha RP. Discussing the evolution of the assorted beasts called language. Lang Commun 2000; 20: 149-60.
Botha RP. How much of language, if any, came about in the same sort of way as the brooding chamber in snails? Lang Commun 2001; 21: 225-43.
Botha RP. Did language evolve like he vertebrate eye? Lang Commun 2002; 22: 131-58.
Kaan E, Swaab TY. The brain circuitry of syntactic comprehension. Trends Cogn Sci 2002; 6: 350-6.
Bellugi U, Losh M, Reilly J, Anderson D. Excessive Use of Linguistically Encoded Affect: Stories from Young Children with Williams Syndrome (Technical Report CND-9801). University of California: Center for Research in Language, Project in Cognitive and Neural Development; 1998.
Lichtenberger L, Bellugi U. The intersection of spatial cognition and language in Williams syndrome. Soc Cognit Neurosci Abstr 1998; 80: 68.
Bishop DVM. Genetic influences on language impairment and literacy problems in child. J Child Psychol Psychiatry 2001b; 42: 189-98.
Purvis KL, Tannock R. Language abilities in children with attention deficit hyperactivity disorder, reading disabilities, and normal controls. J Abnorm Child Psychol 1997; 25: 133-44.
Angold A, Costello EJ, Erkanli A. Comorbidity. J Child Psychol Psychiatry 1999; 40: 57-87.
Caramazza A, McCloskey M. The case for single patient studies. Cogn Neuropsychol 1998; 5: 517-28.
Gould TD, Gottesman II. Psychiatric endophenotypes and the development of valid animal models. Genes Brain Behav 2006; 5: 113-9.
Leboyer M, Bellivier F, Nosten-Bertrand M, Jouvent R, Pauls D, Mallet J. Psychiatric genetics: Search for phenotypes. Trends Neurosci 1998; 21: 102-5.
Almasy I, Blangero J. Endophenotypes as quantitative risk factors for psychiatric disease: Rationale and study design. Am J Med Genet 2001; 105: 42-4.
Tallal P, Sainburg R, Jernigan T. The neuropathology of developmental dysphasia: Behavioral, morphological, and physiological evidence for a pervasive temporal processing disorder. Read Writ 1991; 3: 363-77.
Marcus GF. Cognitive architecture and descent with modification. Cognition 2006; 101: 443-65.
Lorenzo G. El vacío sexual, la tautología natural y la promesa minimalista. Madrid: Antonio Machado Libros; 2006.
Lieberman P. On the nature and evolution of the neural bases of human language. Am J Phys Anthropol 2002; 45: 36-62.
Marcus GF. The Birth of the Mind. How a Tiny Number of Genes Creates the Complexities of Human Thought. New York: Basic Books; 2004.
Chomsky NA. The Minimalist Program. Cambridge: MIT Press; 1995.
Chomsky NA. Minimalist inquiries: The Framework. En: Martin R, Michaels D, Uriagereka J (eds.). Step by Step. Papers in Minimalist Syntax in Honor of Howard Lasnik. Cambridge: MIT Press; 2000: 89-155.
Chomsky NA. Three Factors in Language Design. Linguistic Inquiry 2005; 36: 1-22.
O’Grady W. The radical middle: nativism without Universal Grammar. En: Doughty CJ, Long MH (eds.). Handbook of second language acquisition. Malden: Blackwell; 2003, p. 43-62.
Hauser MD, Chomsky N, Fitch WT. The faculty of language: what is it, who has it, and how did it evolve? Science 2002; 298: 1569-79.
Chomsky NA. Beyond explanatory adequacy. Cambridge: MIT Press; 2001.
Benítez BA. Genes y lenguaje. Teorema 2007b; 26: 37-71.
Lust B. Child Language: Acquisition and Growth. Cambridge: Cambridge University Press; 2006.
Kaufmann WE, Worley PF. Neural Activity and Immediate Early Gene Expression in the Cerebral Cortex. Ment Retard Dev Disabil Res Rev 1999; 5: 41-50.
Katz LC, Crowley JC. Development of cortical circuits: lessons from ocular dominance columns. Nat Rev Neurosci 2002; 3: 34-42.
Balaban E. Cognitive developmental biology: history, process and fortune’s wheel. Cognition 2006; 101: 298-332.