2016, Número 3
<< Anterior Siguiente >>
Rev Cubana Invest Bioméd 2016; 35 (3)
Hidrogeles sensibles al pH como alternativa al mejoramiento del tratamiento de las enfermedades inflamatorias intestinales
Agüero LL
Idioma: Español
Referencias bibliográficas: 51
Paginas: 284-293
Archivo PDF: 321.30 Kb.
RESUMEN
El incremento anual del número de pacientes diagnosticados con enfermedades inflamatorias intestinales atrae la atención de científicos y médicos, debido a los severos efectos colaterales y las reiteradas consultas médicas que reducen de manera considerable la calidad de vida de los pacientes. En esta revisión se abordan las potencialidades de los hidrogeles sensibles al pH como una de las mejores estrategias terapéuticas capaces de liberar la sustancia bioactiva en el colon, y con mayores posibilidades de lograr un tratamiento más eficiente. Su hidrofilicidad, la capacidad de responder a variaciones de pH y la versatilidad en métodos de preparación alcanzándose tamaños a escala micro y nano son analizados para mostrar ventajas, limitaciones, recientes avances y perspectivas futuras de su utilización mediante administración oral.
REFERENCIAS (EN ESTE ARTÍCULO)
Biswal PK, Kumar A, Bhadouriva AS. Design and evaluation of colon specific drug delivery system. IJPCBS. 2013;3(1):150-67.
Hua S, Marks E, Schneider JJ, Keely S. Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel diseases: Selective targeting to diseased versus healthy tissue. Nanomedicine. 2015;11(5):1117-32.
Beloqui A, Coco R, Memvanga PB, Ucakar B, des Rieux A, Préat V, et al. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel diseases. Int J Pharm. 2014;473(1):203-12.
Fakhoury M, Negrulj R, Mooranian A, Al-Salami H. Inflammatory bowel disease: clinical aspects and treatments. J Inflamm Res. 2014;7:113-20.
Mennini N, Furlanetto S, Cirri M, Mura P. Quality by design approach for developing chitosan-Ca-alginate microspheres for colon delivery of celecoxib-hydroxypropyl-b-cyclodextrin-PVP complex. Eur J Pharm Biopharm. 2012;80(1):67-75.
Wang W, Li X, Xie Y, Zhang HA, Yu W, Xiong Y et al. Microencapsulation using natural polysaccharides for drug delivery and cell implantation. J Mater Chem. 2006;16(32):3252-67.
Patel RB, Patel R, Patel J, Patel V, Kinjal S. A promising approaches of colon targeted drug delivery system. IJPRBS. 2014;3(2):814-26.
Dragan ES. Design and applications of interpenetrating polymer network hydrogels. A review. Chem Eng J. 2014;243:572-90.
Lee KY, Mooney DJ. Alginate: Properties and biomedical applications. Prog Polym Sci. 2012;37(1):106-26.
Das N. Preparation methods and properties of hydrogel: A review. Int J Pharm Pharm Sci. 2013;5(3):112-7.
Hoare TR, Kohane DS. Hydrogels in drug delivery: Progress and challenges. Polymer. 2008;49(8):1993-2007.
Lee SC, Kwon IK, Park K. Hydrogel for delivery of bioactive agents: a historical perspective. Adv Drug Deliv Rev. 2013;65(1):17-20.
Kaşgӧz H. Aminofunctionalized acrylamide-maleic acid hydrogels: Adsorption of indigo carmine. Colloids Surf A-Physicochem Eng Asp. 2005;266(1):44-50.
Dursch TJ, Taylor NO, Liu DE, Wu RY, Prausnitz JM, Radke CJ, et al. Water-soluble drug partitioning and adsorption in HEMA/MMA hydrogels. Biomaterials. 2014;35(2):620-9.
Vashist A, Vashist A, Gupta YK, Ahmad S. Recent advances in hydrogel based drug delivery systems for the human body. J Mater Chem. 2014;2(2):147-66.
Lu Y, Zhang K, Wei Q, Liu Z, Chen Y. Poly (MAA-co-AN) hydrogels with improved mechanical properties for theophylline controlled delivery. Acta Biomater. 2009;5(1):316-27.
Hoffman AS. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv Drug Deliv Rev. 2013;65(1):10-6.
Lim HL, Hwang Y, Kar M, Varghese S. Smart hydrogels as functional biomimetic systems. Biomater Sci. 2014;2(5):603-18.
Matricardi P, Di Meo C, Coviello T, Hennink WE, Alhaique F. Interpenetrating polymer network polysaccharide hydrogels for drug delivery and tissue engineering. Adv Drug Deliv Rev. 2013;65(9):1172-87.
George M, Abraham TE. Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan-a review. J Control Release. 2006;114(1):1-14.
Almeida H, Amaral MH, Lobão P. Temperature and pH stimuli-responsive polymers and their applications in controlled and self-regulated drug delivery. J Appl Pharm Sci. 2012;2(6):1-10.
Yoshida T, Lai TC, Kwon GS, Sako K. pH and ion-sensitive polymer for drug delivery. Expert Opin Drug Deliv. 2013;10(11):1497-513.
Qiu Y, Park K. Enviroment-sensitive hydrogels for drug delivery. Adv Drug Deliv Rev. 2012;64:49-60.
Madhav NVS, Kala S. Review on microparticulate drug delivery system. Int J PharmTech Res. 2011;3(3):1242-4.
Chen JK, Chang CJ. Fabrications and applications of stimulus-responsive polymer films and patterns on surfaces: a review. Materials. 2014;7(2):805-75.
Paques JP, van der Linden E, van Rijn CJ, Sagis LM. Preparation methods of alginate nanoparticles. Adv Colloid Interface Sci. 2014;209:163-71.
Alvarez-Lorenzo C, Blanco-Fernandez B, Puga AM, Concheiro A. Crosslinked ionic polysaccharide for stimuli-sensitive drug delivery. Adv Drug Deliv Rev. 2013;65(9):1148-71.
Patel PK, Satwara RS, Pandya SS. Bacteria aided biopolymers as carriers for colon specific drug delivery system: A Review. Int J PharmTech Res. 2012;4(3):1192-214.
James HP, John R, Alex A, Anoop KR. Smart polymers for the controlled delivery of drugs-a concise overview. Acta Pharm Sin B. 2014;4(2):120-7.
Mishira RK, Ramasamy R, Ban NN, Majeed ABA. Synthesis of poly[3-(methacryloylamino) propyl trimethylammonium chloride-co-methacrylic acid] copolymer hydrogels for controlled indomethacin delivery. J Appl Polym Sci. 2013;128(5):3365-74.
Muschert S, Siepmann F, Leclercq B, Carlin B, Siepmann J. Drug release mechanisms from ethylcellulose: PVA-PEG graft copolymer-coated pellets. Eur J Pharm Biopharm. 2009;72(1):130-7.
Raj BS, Nair RS, Samraj PI. Formulation and evaluation of coated microspheres for colon targeting. J App Pharm Sci. 2013;3(8):68-74.
Kan S, Lu J, Liu J, Wang J, Zhao Y. A quality by design (QbD) case study on enteric-coated pellets: Screening of critical variables and establishment of design space at laboratory scale. AJPS 2014;9(5):268-78.
Patil AT, Khobragade DS, Chafle SA, Ujjainkar AP, Umathe SN, Lakhoita CL, et al. Development and evaluation of a hot-melt coating technique for enteric coating. Braz J Pharm Sci. 2012;48(1):69-77.
Rubinstein A. Colonic drug delivery. Drug Discov Today. 2005;2(1):33-7.
Sun WZ, Lin WJ, Alai MS. Preparation of microparticles for acid-labile lansoprazole by solvent evaporation method combined with a spray drying process. J Food Drug Anal. 2012;20(2):438-45.
Builders PF, Kunle OO, Okpaku LC, Builders MI, Attama AA, Adikwu MU, et al. Preparation and evaluation of mucinated sodium alginate microparticles for oral delivery of insulin. Eur J Pharm Biopharm. 2008;70(3):777-83.
Siepmman F, Siepmman J, Walther M, MacRae RJ, Bodmeier R. Polymer blends for controlled release coatings. J Control Release. 2008;125(1):1-15.
Karewicz A, Lęgowik J, Nowakowska M. New bilayer-coated microbead system for controlled release of 5-aminosalicylic acid. Polym Bull. 2011;66(3):433-43.
Hernández E, Cruz R, Robledo F, Santoyo L. Caracterización del alcohol polivinílico usado en recubrimientos de base acuosa. Rev Mex Cienc Farm. 2007;38(002):15-25.
Campos E, Branquinho J, Carreira AS, Carvalho A, Coimbra P, Ferreira P, et al. Designing polymeric microparticles for biomedical and industrial applications. Eur Polym J. 2013;49(8):2005-21.
Singh MN, Hemant KSY, Ram M, Shivakumar HG. Microencapsulation: A promising technique for controlled drug delivery. Res Pharm Sci. 2010;5(2):65-77.
Herrero EP, Martín del Valle EM, Galán MA. Development of a new technology for the production of microcapsules based in atomization processes. Chem Eng J. 2006;117(2):137-42.
Jyothi SS, Seethadevi A, Prabha KS, Muthuprasanna P, Pavitra P. Microencapsulation: a review. Int J Pharm Biol Sci. 2012;3:509-31.
Johnson NR, Wang Y. Coacervate delivery systems for proteins and small molecule drugs. Expert Opin Drug Deliv. 2014;11(12):1829-32.
de Conto LC, Grosso CRF, Gonçalves LAG. Chemometry as applied to the production of omega-3 microcapsules by complex coacervation with soy protein isolate and gum Arabic. Food Sci Technol. 2013;53(1):218-24.
Reis CP, Neufeld RJ, Ribeiro AJ, Veiga F. Nanoencapsulation I. Methods for preparation of drug-loaded polymeric nanoparticles. Nanomedicine. 2006;2(1):8-21.
Sinha R, Kim GJ, Nie S, Shin DM. Nanotechnology in cancer therapeutics: bioconjugated nanoparticles for drug delivery. Mol Cancer Ther. 2006;5(8):1909-17.
Wilczewska AZ, Niemirowicz K, Markiewicz KH, Car H. Nanoparticles as drug delivery systems. Pharmacol Rep. 2012;64(5):1020-37.
Jia F, Liu X, Li L, Mallapragada S, Narasimhan B, Wang Q, et al. Multifunctional nanoparticles for targeted delivery of immune activating and cancer therapeutic agents. J Control Release. 2013;172(3):1020-34.
Zhang L, Gu FX, Chan JM, Wang AZ, Langer RS, Farokhzad OC, et al. Nanoparticles in medicine: therapeutic applications and developments. Clin Pharmacol Ther. 2008;83(5):761-9.