2016, Número 3
<< Anterior Siguiente >>
Investigación en Discapacidad 2016; 5 (3)
El papel del canal Kv1.3 en el desarrollo de la artritis reumatoide
Santoyo-Sánchez M, Ríos-Pérez A, Furuzawa-Carballeda J, Durán-Hernández D, Hernández-Medina E, Esquivel-Álvarez Y, Muñoz-Soto RB
Idioma: Español
Referencias bibliográficas: 50
Paginas: 146-155
Archivo PDF: 265.23 Kb.
RESUMEN
La artritis reumatoide es una enfermedad autoinmune caracterizada por un proceso inflamatorio de las articulaciones. La etiología no está del todo definida; sin embargo, diversos factores de riesgo como la genética del individuo, la exposición a infecciones, o bien, desórdenes de tipo inmune pueden estar involucrados. Los mecanismos moleculares y celulares de la enfermedad incluyen el reclutamiento de ciertos tipos celulares, así como la expresión de citocinas proinflamatorias en los tejidos y sus alrededores. Pero también es cierto que algunas otras moléculas podrían tener un papel importante en la patogénesis de la enfermedad. Uno de los recientes candidatos es el canal Kv1.3. Esta proteína regula el flujo de iones potasio y activa rutas de señalización en diversos tipos celulares, incluyendo los linfocitos T. Estas células son elementos clave en el desarrollo de la artritis reumatoide, ya que inducen la síntesis de citocinas proinflamatorias en tejidos afectados. Kv1.3 se expresa altamente en ciertos linfocitos T reguladores relacionados con enfermedades autoinmunes; por ende, se ha sugerido como un blanco potencial para agentes terapéuticos. A la fecha, diversos inhibidores de este canal se han sintetizado, o bien, aislado de diversas fuentes naturales, lo que sugiere una gran cantidad de oportunidades para modular las respuestas inmunes que pueden desencadenarse a través de la señalización de Kv1.3.
REFERENCIAS (EN ESTE ARTÍCULO)
Fishman P, Bar-Yehuda S. Rheumatoid arthritis: history, molecular mechanisms and therapeutic applications. In: Borea PA, editor. A3 adenosine receptors from cell biology to pharmacology and therapeutics. Netherlands: Springer; 2010. pp. 291-298.
AARDA. Autoimmune Statistics. 2014 [cited 29-09-2014]. Available from: http://www.aarda.org/autoimmune-information/autoimmune-statistics/.
Cardiel MH, Díaz-Borjón A, Vázquez del Mercado Espinosa M, Gámez-Nava JI, Barile Fabris LA, Pacheco Tena C et al. Update of the Mexican College of Rheumatology guidelines for the pharmacologic treatment of rheumatoid arthritis. Reumatol Clin. 2014; 10 (4): 227-240.
Mendoza-Vázquez G, Rocha-Muñoz AD, Guerra-Soto A, Ramírez-Villafaña M, González-Sánchez AG, Gámez-Nava JI et al. Artritis reumatoide y dislipidemias. El Residente. 2013; 8 (1): 12-22.
Scally SW, Petersen J, Law SC, Dudek NL, Nel HJ, Loh KL et al. A molecular basis for the association of the HLA-DRB1 locus, citrullination, and rheumatoid arthritis. J Exp Med. 2013; 210 (12): 2569-2582.
Winchester R. Genetic determination of susceptibility and severity in rheumatoid arthritis. Ann Intern Med. 1992; 117 (10): 869-871.
Li G, Shi F, Liu J, Li Y. The effect of CTLA-4 A49G polymorphism on rheumatoid arthritis risk: a meta-analysis. Diagn Pathol. 2014; 9: 157.
Shakiba E, Tavilani H, Goodarzi MT, Kiani A, Pourmotabbed T, Vaisi-Raygani A. The ITGAV-rs3911238 polymorphism is associated with disease activity in rheumatoid arthritis. Iran J Allergy Asthma Immunol. 2014; 13 (5): 356-363.
Okamoto H, Hoshi D, Kiire A, Yamanaka H, Kamatani N. Molecular targets of rheumatoid arthritis. Inflamm Allergy Drug Targets. 2008; 7 (1): 53-66.
Malemud CJ. Intracellular signaling pathways in rheumatoid arthritis. J Clin Cell Immunol. 2013; 4: 160.
McInnes IB, Schett G. Cytokines in the pathogenesis of rheumatoid arthritis. Nat Rev Immunol. 2007; 7 (6): 429-442.
Roeleveld DM, Koenders MI. The role of the Th17 cytokines IL-17 and IL-22 in rheumatoid arthritis pathogenesis and developments in cytokine immunotherapy. Cytokine. 2015; 74 (1): 101-107.
MacKinnon R. Determination of the subunit stoichiometry of a voltage-activated potassium channel. Nature. 1991; 350 (6315): 232-235.
Li Y, Wang P, Xu J, Desir GV. Voltage-gated potassium channel Kv1.3 regulates GLUT4 trafficking to the plasma membrane via a Ca2+-dependent mechanism. Am J Physiol Cell Physiol. 2006; 290 (2): C345-C351.
Hu L, Wang T, Gocke AR, Nath A, Zhang H, Margolick JB et al. Blockade of Kv1.3 potassium channels inhibits differentiation and granzyme B secretion of human CD8+ T effector memory lymphocytes. PLoS One. 2013; 8 (1): e54267.
Levitan ES, Takimoto K. Surface expression of Kv1 voltage-gated K+ channels is governed by a C-terminal motif. Trends Cardiovasc Med. 2000; 10 (7): 317-320.
Xu J, Wang P, Li Y, Li G, Kaczmarek LK, Wu Y et al. The voltage-gated potassium channel Kv1.3 regulates peripheral insulin sensitivity. Proc Natl Acad Sci U S A. 2004; 101 (9): 3112-3117.
Comes N, Bielanska J, Vallejo-Gracia A, Serrano-Albarras A, Marruecos L, Gomez D et al. The voltage-dependent K(+) channels Kv1.3 and Kv1.5 in human cancer. Front Physiol. 2013; 4: 283.
Airmid. Kv1.3 Potassium Channel. 2014. Available from: http://www.airmid.com/kv-potassium-channel.html.
Panyi G, Varga Z, Gaspar R. Ion channels and lymphocyte activation. Immunol Lett. 2004; 92 (1-2): 55-66.
Hou P, Zhang R, Liu Y, Feng J, Wang W, Wu Y et al. Physiological role of Kv1.3 channel in T lymphocyte cell investigated quantitatively by kinetic modeling. PLoS One. 2014; 9 (3): e89975.
Imboden JB, Weiss A. The T-cell antigen receptor regulates sustained increases in cytoplasmic free Ca2+ through extracellular Ca2+ influx and ongoing intracellular Ca2+ mobilization. Biochem J. 1987; 247 (3): 695-700.
Weiss A, Imboden J, Hardy K, Stobo J. The role of the antigen receptor/T3 complex in T-cell activation. Adv Exp Med Biol. 1987; 213: 45-49.
Panyi G, Vamosi G, Bacso Z, Bagdany M, Bodnar A, Varga Z et al. Kv1.3 potassium channels are localized in the immunological synapse formed between cytotoxic and target cells. Proc Natl Acad Sci U S A. 2004; 101 (5): 1285-1290.
Panyi G, Bagdany M, Bodnar A, Vamosi G, Szentesi G, Jenei A et al. Colocalization and nonrandom distribution of Kv1.3 potassium channels and CD3 molecules in the plasma membrane of human T lymphocytes. Proc Natl Acad Sci U S A. 2003; 100 (5): 2592-2597.
Szilagyi O, Boratko A, Panyi G, Hajdu P. The role of PSD-95 in the rearrangement of Kv1.3 channels to the immunological synapse. Pflugers Arch. 2013 ;465 (9): 1341-1353.
Lewis RS. Calcium signaling mechanisms in T lymphocytes. Annu Rev Immunol. 2001; 19: 497-521.
Lin CS, Boltz RC, Blake JT, Nguyen M, Talento A, Fischer PA et al. Voltage-gated potassium channels regulate calcium-dependent pathways involved in human T lymphocyte activation. J Exp Med. 1993; 177 (3): 637-645.
Nicolaou SA, Neumeier L, Steckly A, Kucher V, Takimoto K, Conforti L. Localization of Kv1.3 channels in the immunological synapse modulates the calcium response to antigen stimulation in T lymphocytes. J Immunol. 2009; 183 (10): 6296-6302.
Beeton C, Wulff H, Standifer NE, Azam P, Mullen KM, Pennington MW et al. Kv1.3 channels are a therapeutic target for T cell-mediated autoimmune diseases. Proc Natl Acad Sci U S A. 2006; 103 (46): 17414-17419.
Teisseyre A, Michalak K. Inhibition of the activity of human lymphocyte Kv1.3 potassium channels by resveratrol. J Membr Biol. 2006; 214 (3): 123-129.
Teisseyre A, Michalak K. Genistein inhibits the activity of kv1.3 potassium channels in human T lymphocytes. J Membr Biol. 2005; 205 (2): 71-79.
Beeton C, Pennington MW, Norton RS. Analogs of the sea anemone potassium channel blocker ShK for the treatment of autoimmune diseases. Inflamm Allergy Drug Targets. 2011; 10 (5): 313-321.
Rashid MH, Huq R, Tanner MR, Chhabra S, Khoo KK, Estrada R et al. A potent and Kv1.3-selective analogue of the scorpion toxin HsTX1 as a potential therapeutic for autoimmune diseases. Sci Rep. 2014; 4: 4509.
Gurrola GB, Hernández-López RA, Rodríguez de la Vega RC, Varga Z, Batista CV, Salas-Castillo SP et al. Structure, function, and chemical synthesis of Vaejovis mexicanus peptide 24: a novel potent blocker of Kv1.3 potassium channels of human T lymphocytes. Biochemistry. 2012; 51 (19): 4049-4061.
Varga Z, Gurrola-Briones G, Papp F, Rodríguez de la Vega RC, Pedraza-Alva G, Tajhya RB et al. Vm24, a natural immunosuppressive peptide, potently and selectively blocks Kv1.3 potassium channels of human T cells. Mol Pharmacol. 2012; 82 (3): 372-382.
Ahn H, Kim S, Jang HJ, Kim MJ, Rhie DJ, Yoon SH et al. Open channel block of Kv1.3 by rosiglitazone and troglitazone: Kv1.3 as the pharmacological target for rosiglitazone. Naunyn-Schmied Arch Pharmacol. 2007; 374 (4): 305-309.
Bradding P, Wulff H. The K+ channels KCa3.1 and Kv1.3 as novel targets for asthma therapy. Br J Pharmacol. 2009; 157 (8): 1330-1339.
Wulff H, Castle NA, Pardo LA. Voltage-gated potassium channels as therapeutic drug targets. Nat Rev Drug Discov. 2009; 8 (12): 982-1001.
Wulff H, Rauer H, Düring T, Hanselmann C, Ruff K, Wrisch A et al. Alkoxypsoralens, novel nonpeptide blockers of Shaker-type K+ channels: synthesis and photoreactivity. J Med Chem. 1998; 41 (23): 4542-4549.
Vennekamp J, Wulff H, Beeton C, Calabresi PA, Grissmer S, Hansel W et al. Kv1.3-blocking 5-phenylalkoxypsoralens: a new class of immunomodulators. Mol Pharmacol. 2004; 65 (6): 1364-1374.
Schmitz A, Sankaranarayanan A, Azam P, Schmidt-Lassen K, Homerick D, Hansel W et al. Design of PAP-1, a selective small molecule Kv1.3 blocker, for the suppression of effector memory T cells in autoimmune diseases. Mol Pharmacol. 2005; 68 (5): 1254-1270.
Baell JB, Gable RW, Harvey AJ, Toovey N, Herzog T, Hänsel W et al. Khellinone derivatives as blockers of the voltage-gated potassium channel Kv1.3: synthesis and immunosuppressive activity. J Med Chem. 2004; 47 (9): 2326-2336.
Harvey AJ, Baell JB, Toovey N, Homerick D, Wulff H. A new class of blockers of the voltage-gated potassium channel Kv1.3 via modification of the 4- or 7-position of khellinone. J Med Chem. 2006; 49 (4): 1433-1441.
Miao S, Bao J, Garcia ML, Goulet JL, Hong XJ, Kaczorowski GJ et al. Benzamide derivatives as blockers of Kv1.3 ion channel. Bioorg Med Chem Lett. 2003; 13 (6): 1161-1164.
Ren YR, Pan F, Parvez S, Fleig A, Chong CR, Xu J et al. Clofazimine inhibits human Kv1.3 potassium channel by perturbing calcium oscillation in T lymphocytes. PLoS One. 2008; 3 (12): e4009.
Beeton C, Wulff H, Singh S, Botsko S, Crossley G, Gutman GA et al. A novel fluorescent toxin to detect and investigate Kv1.3 channel up-regulation in chronically activated T lymphocytes. J Biol Chem. 2003; 278 (11): 9928-9937.
Mouhat S, Visan V, Ananthakrishnan S, Wulff H, Andreotti N, Grissmer S et al. K+ channel types targeted by synthetic OSK1, a toxin from Orthochirus scrobiculosus scorpion venom. Biochem J. 2005; 385 (Pt 1): 95-104.
Koo GC, Blake JT, Talento A, Nguyen M, Lin S, Sirotina A et al. Blockade of the voltage-gated potassium channel Kv1.3 inhibits immune responses in vivo. J Immunol. 1997; 158 (11): 5120-5128.
Hahn SJ, Wang LY, Kaczmarek LK. Inhibition by nystatin of Kv1.3 channels expressed in Chinese hamster ovary cells. Neuropharmacology. 1996; 35 (7): 895-901.