2016, Número 5
Curcumina, una alternativa terapéutica para la clínica dental (Parte I): antiinflamatorio y analgésico
Montes ÁCD, Llamosas HE, García HAL, Pérez MIO
Idioma: Español
Referencias bibliográficas: 80
Paginas: 245-249
Archivo PDF: 227.06 Kb.
RESUMEN
La curcumina es una sustancia derivada de una planta llamada
Curcuma longa. A esta sustancia se le han atribuido diversos efectos terapéuticos. En relación con la clínica dental, se ha observado que, además de ayudar en el control del dolor, ha sido efectiva contra la periodontitis, estomatitis y mucositis pediátrica. El control del dolor e inflamación son aspectos muy importantes para la mayoría de los tratamientos en odontología; la búsqueda de nuevas alternativas analgésicas y antiinflamatorias que, en comparación con las actuales, sean más eficientes, efectivas y tengan menos efectos colaterales es uno de los grandes retos de las ciencias biomédicas. La presente revisión muestra algunas evidencias científicas de los efectos de la curcumina como un antiinflamatorio y analgésico, con el propósito de sentar las bases para futuros estudios clínicos y de ciencia básica que aporten un mayor entendimiento de los procesos celulares, bioquímicos, moleculares, fisiológicos y farmacológicos de la curcumina como una sustancia potencialmente útil en el consultorio dental.
REFERENCIAS (EN ESTE ARTÍCULO)
Han YK et al. Analgesic effects of intrathecal curcumin in the rat formalin test. Korean J Pain. 2012; 25 (1): 1-6.
Jacob JN et al. Evaluation of the in vivo anti-inflammatory and analgesic and in vitro anti-cancer activities of curcumin and its derivatives. Nat Prod Commun. 2013; 8 (3): 359-362.
Jadhav SY et al. PEG mediated synthesis and biological evaluation of asymmetrical pyrazole curcumin analogues as potential analgesic, anti-inflammatory and antioxidant agents. Chem Biol Drug Des. 2015; 85 (3): 377-384.
Yilmaz-Savcun G et al. Antioxidant and anti-inflammatory effects of curcumin against hepatorenal oxidative injury in an experimental sepsis model in rats. Ulus Travma Acil Cerrahi Derg. 2013; 19 (6): 507-515.
Kant V et al. Antioxidant and anti-inflammatory potential of curcumin accelerated the cutaneous wound healing in streptozotocin-induced diabetic rats. Int Immunopharmacol. 2014; 20 (2): 322-330.
Menon VP, Sudheer AR. Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 2007; 595: 105-125.
Esatbeyoglu T et al. Thermal stability, antioxidant, and anti-inflammatory activity of curcumin and its degradation product 4-vinyl guaiacol. Food Funct. 2015; 6 (3): 887-893.
Goncalves V P et al. Chemopreventive activity of systemically administered curcumin on oral cancer in the 4-nitroquinoline 1-oxide model. J Cell Biochem. 2015; 116 (5): 787-796.
Li J et al. Combination of curcumin and bicalutamide enhanced the growth inhibition of androgen-independent prostate cancer cells through SAPK/JNK and MEK/ERK1/2-mediated targeting NF-kappa B/p65 and MUC1-C. J Exp Clin Cancer Res. 2015; 34: 46.
Tsai JR et al. Curcumin inhibits non-small cell lung cancer cells metastasis through the adiponectin/NF-kappab/MMPs signaling pathway. PLoS One. 2015; 10 (12): e0144462.
Killian PH et al. Curcumin inhibits prostate cancer metastasis in vivo by targeting the inflammatory cytokines CXCL1 and-2. Carcinogenesis. 2012; 33 (12): 2507-2519.
Mishra A et al. Curcumin modulates cellular AP-1, NF-kB, and HPV16 E6 proteins in oral cancer. E Cancer Medical Science. 2015; 9: 525.
Boyanapalli SS, Tony Kong AN. “Curcumin, the King of Spices”: epigenetic regulatory mechanisms in the prevention of cancer, neurological, and inflammatory diseases. Curr Pharmacol Rep. 2015; 1 (2): 129-139.
Basnet P, Skalko-Basnet N. Curcumin: an anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules. 2011; 16 (6): 4567-4598.
Ferreira LC et al. Effect of curcumin on pro-angiogenic factors in the xenograft model of breast cancer. Anticancer Agents Med Chem. 2015; 15 (10): 1285-1296.
Chan MM et al. In vivo inhibition of nitric oxide synthase gene expression by curcumin, a cancer preventive natural product with anti-inflammatory properties. Biochem Pharmacol, 1998; 55 (12): 1955-1962.
Sajomsang W et al. Synthesis and anticervical cancer activity of novel pH responsive micelles for oral curcumin delivery. Int J Pharm. 2014; 477 (1-2): 261-272.
Ferreira VH et al. The anti-inflammatory activity of curcumin protects the genital mucosal epithelial barrier from disruption and blocks replication of HIV-1 and HSV-2. PLoS One. 2015; 10 (4): e0124903.
Wang J et al. Anti-inflammatory activity of curcumin-loaded solid lipid nanoparticles in IL-1beta transgenic mice subjected to the lipopolysaccharide-induced sepsis. Biomaterials. 2015; 53: 475-483.
Fan Z et al. Anti-inflammatory and antioxidant effects of curcumin on acute lung injury in a rodent model of intestinal ischemia reperfusion by inhibiting the pathway of NF-Kb. Int J Clin Exp Pathol. 2015; 8 (4): 3451-3459.
Zhang N et al. Anti-inflammatory effect of curcumin on mast cell-mediated allergic responses in ovalbumin-induced allergic rhinitis mouse. Cell Immunol. 2015; 298 (1-2): 88-95.
Jin W et al. Anti-inflammatory effects of curcumin in experimental spinal cord injury in rats. Inflamm Res. 2014; 63 (5): 381-387.
Zhang Y et al. Anti-inflammatory effects of novel curcumin analogs in experimental acute lung injury. Respir Res. 2015; 16: 43.
Nahar PP, Slitt AL, Seeram NP. Anti-inflammatory effects of novel standardized solid lipid curcumin formulations. J Med Food. 2015; 18 (7): 786-792.
Heeba GH, Mahmoud ME, El Hanafy AA. Anti-inflammatory potential of curcumin and quercetin in rats: role of oxidative stress, heme oxygenase-1 and TNF-alpha. Toxicol Ind Health. 2014; 30 (6): 551-560.
Al-Rohaimi AH. Comparative anti-inflammatory potential of crystalline and amorphous nano curcumin in topical drug delivery. J Oleo Sci. 2015; 64 (1): 27-40.
Sarker MR et al. Curcumin mimics the neurocognitive and anti-inflammatory effects of caloric restriction in a mouse model of midlife obesity. PLoS One. 2015; 10 (10): e0140431.
Agrawal R et al. Development and evaluation of curcumin-loaded elastic vesicles as an effective topical anti-inflammatory formulation. AAPS PharmSciTech. 2015; 16 (2): 364-374.
Zhang Y et al. Discovery and evaluation of asymmetrical monocarbonyl analogs of curcumin as anti-inflammatory agents. Drug Des Devel Ther. 2014; 8: 373-382.
Zhang Y et al. Discovery and evaluation of novel anti-inflammatory derivatives of natural bioactive curcumin. Drug Des Devel Ther. 2014; 8: 2161-2171.
Aggarwal BB et al. Curcumin: the Indian solid gold. Adv Exp Med Biol. 2007; 595: 1-75.
Chainani-Wu N. Safety and anti-inflammatory activity of curcumin: a component of tumeric (Curcuma longa). J Altern Complement Med. 2003; 9 (1): 161-168.
Srimal RC, Dhawan BN. Pharmacology of diferuloyl methane (curcumin), a non-steroidal anti-inflammatory agent. J Pharm Pharmacol. 1973; 25 (6): 447-452.
Siddiqui AM et al. The anti-inflammatory effect of curcumin in an experimental model of sepsis is mediated by up-regulation of peroxisome proliferator-activated receptor-gamma. Crit Care Med. 2006; 34 (7): 1874-1882.
Saja K et al. Anti-inflammatory effect of curcumin involves downregulation of MMP-9 in blood mononuclear cells. Int Immunopharmacol. 2007; 7 (13): 1659-1667.
Karaman M et al. Anti-inflammatory effects of curcumin in a murine model of chronic asthma. Allergol Immunopathol (Madr). 2012; 40 (4): 210-214.
Bereswill S et al. Anti-inflammatory effects of resveratrol, curcumin and simvastatin in acute small intestinal inflammation. PLoS One. 2010; 5 (12): e15099.
Singh AK et al. Anti-inflammatory potency of nano-formulated puerarin and curcumin in rats subjected to the lipopolysaccharide-induced inflammation. J Med Food. 2013; 16 (10): 899-911.
Jurenka JS. Anti-inflammatory properties of curcumin, a major constituent of Curcuma longa: a review of preclinical and clinical research. Altern Med Rev. 2009; 14 (2): 141-153.
Zhou T et al. Curcumin inhibits inflammatory response and bone loss during experimental periodontitis in rats. Acta Odontol Scand. 2013; 71 (2): 349-356.
Lim YS et al. Enhanced mucosal healing with curcumin in animal oral ulcer model. Laryngoscope. 2015; 126 (2): 68-73.
Luer SC et al. Synthetic versus natural curcumin: bioequivalence in an in vitro oral mucositis model. BMC Complement Altern Med. 2014; 14: 53.
Elad S et al. Topical curcumin for the prevention of oral mucositis in pediatric patients: case series. Altern Ther Health Med. 2013; 19 (3): 21-24.
Patil K et al. Use of curcumin mouthrinse in radio-chemotherapy induced oral mucositis patients: a pilot study. J Clin Diagn Res. 2015; 9 (8): ZC59-ZC62.
Leite DP et al. Effects of photodynamic therapy with blue light and curcumin as mouth rinse for oral disinfection: a randomized controlled trial. Photomed Laser Surg. 2014; 32 (11): 627-632.
Hazzah HA et al. Gelucire-based nanoparticles for curcumin targeting to oral mucosa: preparation, characterization, and antimicrobial activity assessment. J Pharm Sci. 2015; 104 (11): 3913-3924.
Lee AY et al. Curcumin inhibits invasiveness and epithelial-mesenchymal transition in oral squamous cell carcinoma through reducing matrix metalloproteinase 2, 9 and modulating p53-E-cadherin pathway. Integr Cancer Ther. 2015; 14 (5): 484-490.
Zhen L et al. Curcumin inhibits oral squamous cell carcinoma proliferation and invasion via EGFR signaling pathways. Int J Clin Exp Pathol. 2014; 7 (10): 6438-6446.
Xiao C et al. Curcumin inhibits oral squamous cell carcinoma SCC-9 cells proliferation by regulating miR-9 expression. Biochem Biophys Res Commun. 2014; 454 (4): 576-580.
Chiang IT et al. Curcumin synergistically enhances the radiosensitivity of human oral squamous cell carcinoma via suppression of radiation-induced NF-kappaB activity. Oncol Rep. 2014; 31 (4): 1729-1737.
Dudas J et al. Curcumin targets fibroblast-tumor cell interactions in oral squamous cell carcinoma. Exp Cell Res. 2013; 319 (6): 800-809.
Mazzarino L et al. Curcumin-loaded chitosan-coated nanoparticles as a new approach for the local treatment of oral cavity cancer. J Nanosci Nanotechnol. 2015; 15 (1): 781-791.
Abe Y, Hashimoto S, Horie T. Curcumin inhibition of inflammatory cytokine production by human peripheral blood monocytes and alveolar macrophages. Pharmacol Res. 1999; 39 (1): 41-47.
Conboy L et al. Curcumin-induced degradation of PKC delta is associated with enhanced dentate NCAM PSA expression and spatial learning in adult and aged Wistar rats. Biochem Pharmacol. 2009; 77 (7): 1254-1265.
Wang SL et al. Curcumin, a potential inhibitor of up-regulation of TNF-alpha and IL-6 induced by palmitate in 3T3-L1 adipocytes through NF-kappaB and JNK pathway. Biomed Environ Sci. 2009; 22 (1): 32-39.
Onoue S et al. Formulation design and photochemical studies on nanocrystal solid dispersion of curcumin with improved oral bioavailability. J Pharm Sci. 2010; 99 (4): 1871-1881.
Billerey-Larmonier C et al. Protective effects of dietary curcumin in mouse model of chemically induced colitis are strain dependent. Inflamm Bowel Dis. 2008; 14 (6): 780-793.
Anthwal A et al. Synthesis, characterization and in vitro anticancer activity of C-5 curcumin analogues with potential to inhibit TNF-alpha-induced NF-kappa B activation. Biomed Res Int. 2014; 2014: 524161.
Gu Y et al. 4-methoxycarbonyl curcumin: a unique inhibitor of both inflammatory mediators and periodontal inflammation. Mediators Inflamm. 2013; 2013: 329740.
Abusnina A et al. Tumour growth inhibition and anti-angiogenic effects using curcumin correspond to combined PDE2 and PDE4 inhibition. Thromb Haemost. 2015; 113 (2): 319-328.
Zhang ZJ et al. Curcumin inhibits LPS-induced CCL2 expression via JNK pathway in C6 rat astrocytoma cells. Cell Mol Neurobiol. 2012; 32 (6): 1003-1010.
Chen YR, Tan TH. Inhibition of the c-Jun N-terminal kinase (JNK) signaling pathway by curcumin. Oncogene. 1998; 17 (2): 173-178.
Cao J et al. Curcumin inhibits EMMPRIN and MMP-9 expression through AMPK-MAPK and PKC signaling in PMA induced macrophages. J Transl Med. 2014; 12: 266.
Sandur SK et al. Curcumin, demethoxycurcumin, bisdemethoxycurcumin, tetrahydrocurcumin and turmerones differentially regulate anti-inflammatory and anti-proliferative responses through a ROS-independent mechanism. Carcinogenesis. 2007; 28 (8): 1765-1773.
Chereddy KK et al. Combined effect of PLGA and curcumin on wound healing activity. J Control Release. 2013; 171 (2): 208-215.
Memvanga PB et al. Development of a liquid chromatographic method for the simultaneous quantification of curcumin, beta-arteether, tetrahydrocurcumin and dihydroartemisinin. Application to lipid-based formulations. J Pharm Biomed Anal. 2014; 88: 447-456.
Memvanga PB, Coco R, Preat V. An oral malaria therapy: curcumin-loaded lipid-based drug delivery systems combined with beta-arteether. J Control Release. 2013; 172 (3): 904-913.
Beloqui A et al. pH-sensitive nanoparticles for colonic delivery of curcumin in inflammatory bowel disease. Int J Pharm. 2014; 473 (1-2): 203-212.
Lee WH et al. Curcumin nanoparticles attenuate production of pro-inflammatory markers in lipopolysaccharide-induced macrophages. Pharm Res. 2015; 33 (2): 15-27.
Yeon KY et al. Curcumin produces an antihyperalgesic effect via antagonism of TRPV1. J Dent Res. 2010; 89 (2): 170-174.
Sharma S et al. Curcumin attenuates thermal hyperalgesia in a diabetic mouse model of neuropathic pain. Eur J Pharmacol. 2006; 536 (3): 256-261.
Moini-Zanjani T et al. The attenuation of pain behavior and serum COX-2 concentration by curcumin in a rat model of neuropathic pain. Korean J Pain. 2014; 27 (3): 246-252.
Zhu X et al. Curcumin alleviates neuropathic pain by inhibiting p300/CBP histone acetyltransferase activity-regulated expression of BDNF and cox-2 in a rat model. PLoS One. 2014; 9 (3): e91303.
Ahern GP et al. Extracellular cations sensitize and gate capsaicin receptor TRPV1 modulating pain signaling. J Neurosci. 2005; 25 (21): 5109-5116.
Lee JY et al. Antinociceptive curcuminoid, KMS4034, effects on inflammatory and neuropathic pain likely via modulating TRPV1 in mice. Br J Anaesth. 2013; 111 (4): 667-672.
Chen JJ et al. Intrathecal curcumin attenuates pain hypersensitivity and decreases spinal neuroinflammation in rat model of monoarthritis. Sci Rep. 2015; 5: 10278.
Shi X et al. Curcumin inhibits Abeta-induced microglial inflammatory responses in vitro: involvement of ERK1/2 and p38 signaling pathways. Neurosci Lett. 2015; 594: 105-110.
Kim HY et al. Curcumin suppresses Janus kinase-STAT inflammatory signaling through activation of Src homology 2 domain-containing tyrosine phosphatase 2 in brain microglia. J Immunol. 2003; 171 (11): 6072-6079.
Lee JH et al. The effect of intrathecal curcumin on mechanical allodynia in rats after L5 spinal nerve ligation. Korean J Anesthesiol. 2014; 67 (Suppl): S122-S123.
Zhang L et al. Demethoxycurcumin, a natural derivative of curcumin attenuates LPS-induced pro-inflammatory responses through down-regulation of intracellular ROS-related MAPK/NF-kappaB signaling pathways in N9 microglia induced by lipopolysaccharide. Int Immunopharmacol. 2010; 10 (3): 331-338.