2016, Número 2
<< Anterior Siguiente >>
Rev Cubana Hematol Inmunol Hemoter 2016; 32 (2)
Protagonismo del sistema inmune en el microambiente de los tumores malignos de la mama
Arango PMC, Rodríguez-Padilla C
Idioma: Español
Referencias bibliográficas: 50
Paginas: 190-202
Archivo PDF: 136.94 Kb.
RESUMEN
Los avances recientes en la comprensión de los mecanismos génicos y moleculares
del cáncer de mama han revelado que el sistema inmune protagoniza los eventos
responsables del desarrollo y la progresión del tumor. Las células de la respuesta
inmune innata y adaptativa, así como diversos mediadores solubles liberados por
ellas, pueden establecer una respuesta antitumoral protectora o, por el contrario,
inducir eventos de inflamación crónica que favorezcan la promoción y progresión de
esta enfermedad. Esta dualidad, se protagoniza en el microambiente del tumor, el
cual puede regular la carcinogénesis en dependencia del infiltrado de células inmunes
que predominen. Esta revisión, pretende resumir los conocimientos actuales de la
relación sistema inmune-cáncer de mama, enfatizando en las células inmunes del
microambiente del tumor y su importancia como biomarcadores de evolución clínica
de la enfermedad.
REFERENCIAS (EN ESTE ARTÍCULO)
Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012. CA Cancer J Clin. 2015, 65 (2):87-108.
Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, et al. The Global Burden of Cancer 2013. JAMA Oncol. 2015, 1(4):505-27.
Skarin AT, Wardley A. Breast Cancer. New York: Mosby;2007.p.125-42.
Hellman S, Harris JR. Diseases of the Breast.Philadelphia: Lippincott Williams &Wilkins; 2000.p.407-23.
Devita V, Hellman S, Rosenberg SA. Cancer: Principles and Practice of Oncology.9thed. Philadelphia:Lippincott Williams & Wilkins;2011.p.142-6.
Disis ML. Immune regulation of cancer. J Clin Oncol. 2010,28:4531-8.
Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity's roles in cancer suppression and promotion. Science 2011, 331:1565-70.
Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation. Cell. 2011;144: 646-74.
Mittal D, Gubin MM, Schreiber RD, Smyth MJ. New insights into cancer immunoediting and its three component phases-elimination, equilibrium and escape. Curr Opinion Immunol. 2014;27:16-25.
Stewart T, Tsai SC, Grayson H, Henderson R, Opelz G. Incidence of de-novo breast cancer in women chronically immunosuppressed after organ transplantation. Lancet.1995; 346: 796-8.
Arango MC, Faxas ME, Alvarez I, Camacho R, Rodríguez C. Compromiso del sistema inmune en pacientes con cáncer de mama. Cancerología. 2008;3 (4):191-7.
Hadden JW. The immunology and immunotherapy of breast cancer: an update. Int J Immunopharmacol.1999;21(2):79-101.
Mittendorf EA, Peoples GE, Singletary SE. Breast cancer vaccines: promise for the future or pipe dream? Cancer.2007;110:1677-86.
Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell.2005;7:211-7.
de Visser KE, Coussens LM. The inflammatory tumor microenvironment and its impact on cancer development. Contrib Microbiol.2006;13:118-37.
Balkwill F, Mantovani A. Inflammation and cancer: back to Virchow? Lancet.2001, 357:539-45.
De Nardo DG, Coussens LM. Inflammation and breast cancer. Balancing immune response: crosstalk between adaptive and innate immune cells during breast cancer progression. Breast Cancer Res. 2007;9:212.
Nicolini A, Carpi A, Rossi G. Cytokines in breast cancer. Cytokine Growth Factor Rev. 2006;17(5):325-37.
Rao VS, Dyer CE, Jameel JK, Drew PJ, Greenman J. Potential prognostic and therapeutic roles for cytokines in breast cancer. Oncol Rep. 2006;15(1):179- 85.
Mantovani A, Allavena P, Sica A. Tumour-associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression.Eur J Cancer.2004;40:1660-7.
Muraro E, Comaro E, Talamini R, Turchet E, Miolo G, ScaloneS, et al. Improved Natural Killer cell activity and retained anti-tumor CD8 (+) T cell responses contribute to the induction of a pathological complete response in HER2-positive breast cancer patients undergoing neoadjuvantchemotherapy. JTransl Med. 2015 Jun;13:204.
Parker KH, Beury DW, Ostrand-Rosenberg S. Myeloid-Derived Suppressor Cells: Critical Cells Driving Immune Suppression in the Tumor Microenvironment. Adv Cancer Res. 2015;128:95-139.
GujamFJ, McMillan DC, Mohammed ZM, Edwards J, Going JJ. The relationship between tumour budding, the tumour microenvironment and survival in patients with invasive ductal breast cancer. Br J Cancer. 2015 Sep 29;113(7):1066-74. doi: 10.1038/bjc.2015.287.
GajewskiTF, Schreiber H, Fu YX. Innate and adaptive immune cells in the tumour microenvironment. Nat Immunol. 2013;14:1014-22.
Dawson H, Lugli A. Molecular and pathogenetic aspects of tumor budding in colorectal cancer. Front Med. 2015;2:11.
Liang FL, Cao W, Wang YL, Li LR, Zhang GJ, Wang Z. The prognostic value of tumor budding in invasive breast cancer. Pathol Res Pract. 2013;209:269-75.
Gujam FJA, Edwards J, Mohammed ZMA, Going JJ, McMillan DC. The relationship between the tumour stroma percentage, clinicopathological characteristics and outcome in patients with operable ductal breast cancer. Br J Cancer. 2014 Jul 8;111(1):157-65. doi: 10.1038/bjc.2014.279.
Mantovani A, Allavena P, Sica A. Tumour- associated macrophages as a prototypic type II polarised phagocyte population: role in tumour progression. Eur J Cancer. 2004; 40:1660-7.
Mantovani A, Allavena P, Sica A, Balkwill F. Cancer-related inflammation. Nature. 2008, 454:436-44.
Sousa S, Brion R, Lintunen M, Kronqvist P, Sandholm J, Mönkkönen J, et al. Human breast cancer cells educate macrophages toward the M2 activation status. Breast Cancer Res. 2015;17:101-4.
Schmetterer KG, Neunkirchner A, Pickl WF. Naturally occurring regulatory T cells: markers, mechanisms, and manipulation. FASEB J. 2012; 26(6):2253-76.
Chen X, Oppenheim JJ. Resolving the identity myth: key markers of functional CD4+FoxP3+ regulatory T cells. Int Immunopharmacol. 2011;11(10):1489-96.
Liu R, Li S, Yang W. IPEX Syndrome, FOXP3 and Cancer. J Syndr. 2013 Jun;1(1): 7.
Karanikas V, Speletas M, Zamanakou M. FOXP3 expression in human cancer cells. J Transl Med.2008;6:19-21.
Bates GJ, Fox SB, Han C, Leek RD. Quantification of regulatory T cells enables the identification of high-risk breast cancer patients and those at risk of late relapse. J Clin Oncol. 2006; 24: 5373-80.
Chin Y, Janseens J, Vandepitte J. Phenotypic analysis of tumor infiltrating lymphocytes from human breast cancer. Anticancer Res.1992;12:1463-6.
Douglass S, Ali S, Meeson AP, Browell D, Kirby JA. The role of FOXP3 in the development and metastatic spread of breast cancer. Cancer Metastasis Rev. 2012; 31: 843-54.
Criscitiello C, Esposito A, Gelao L, Fumagalli L, Locatelli M, Minchella I, et al. Immune approaches to the treatment of breast cancer, around the corner? Breast Cancer Res. 2014;16:204-9.
Recchia F, Candeloro G, Necozione S, Desideri G, Cesta A, Recchia L, et al. Vascular endothelial growth factor expression and T-regulatory cells in premenopausal breast cancer. Oncol Lett. 2013;5 (4):1117-22.
Peranzoni E, Zilio S, Marigo I. Myeloid-derived suppressor cell heterogeneity and subset definition. Curr Opin Immunol. 2010; 22: 238-44.
Montero AJ, Diaz-Montero CM, Kyriakopoulos CE, Bronte B, Mandruzzatoz S. Myeloid-derived Suppressor Cells in Cancer Patients: A Clinical Perspective. J Immunother. 2012;35(2):107-14.
Diaz-Montero CM, Salem ML, Nishimura MI. Increased circulating myeloid-derived suppressor cells correlate with clinical cancer stage, metastatic tumor burden, and doxorubicincyclophosphamide chemotherapy. Cancer Immunol Immunother. 2009; 58: 49-59.
Bergenfelz C, Larsson AM, von Stedingk K, Gruvberger-Saal S, Aaltonen K, Jansson S, et al. Systemic Monocytic-MDSCs Are Generated from Monocytes and Correlate with Disease Progression in Breast Cancer Patients. PLoS One. 2015; May;10 (5): e0127028.
Coronella-Wood JA, Hersh EM: Naturally occurring B-cell responses to breast cancer. Cancer Immunol Immunother.2003;52:715-38.
Mahmoud SM, Paish EC, Powe DG, Macmillan RD, GraingeMJ, Lee AH, et al. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol. 2011;29:1949-55.
Ruffell B, Au A, Rugo HS, Esserman LJ, Hwang ES, Coussens LM. Leukocyte composition of human breast cancer. Proc Natl Acad Sci U S A. 2012;109:2796-01.
Ladoire S, Mignot G, Dabakuyo S, Arnould L, Apetoh L, Rébé C, et al. In situ immune response after neoadjuvant chemotherapy for breast cancer predicts survival.J Pathol. 2011;224:389-400.
Denkert C, Loibl S, Noske A, Roller M, Müller BM, Komor M, et al. Tumorassociated lymphocytes as an independent predictor of response to neoadjuvant chemotherapy in breast cancer. J ClinOncol. 2010;28:105-13.
Hornychova H, Melichar B, Tomsova M, Mergancova J, Urminska H, Ryska A. Tumor-infiltrating lymphocytes predict response to neoadjuvant chemotherapy in patients with breast carcinoma. Cancer Invest. 2008;26:1024-31.
Lee HJ, SeoJH, AhnJH, AhnSH, Gong G. Tumor-Associated Lymphocytes Predict Response to Neoadjuvant Chemotherapy in Breast Cancer Patients. J Breast Cancer. 2013; 16 (1): 32-9.