2005, Número 3
<< Anterior Siguiente >>
Rev Mex Neuroci 2005; 6 (3)
Capacidad antioxidante total en pacientes cubanos con ataxia espinocerebelosa tipo 2
Almaguer MLE, Almaguer GD, González ZY, Martínez GE, Bahr VP
Idioma: Español
Referencias bibliográficas: 34
Paginas: 201-206
Archivo PDF: 147.61 Kb.
RESUMEN
Introducción: La ataxia espinocerebelosa tipo 2 (SCA2) es una enfermedad neurodegenerativa, que sigue un patrón de herencia autosómico dominante. Se debe a la expansión de una secuencia repetitiva de CAG del gen SCA2 (12q24.1), que codifica para una proteína poliglutamínica de función aún desconocida. Recientemente han sido encontradas evidencias sobre la existencia de un desbalance oxidativo en esta afección.
Objetivos: Determinar si existe alguna alteración de la capacidad antioxidante total (CAT) en pacientes con ataxia espinocerebelosa tipo 2, y evaluar si este parámetro depende del género o la edad, y si existe asociación entre la capacidad antioxidante total y variables que caracterizan clínica y molecularmente a los pacientes enfermos.
Sujetos y Métodos: Realizamos un estudio de casos y controles en pacientes con diagnóstico clínico y molecular de SCA2 (n = 38), y sujetos controles (n = 42). La capacidad antioxidante total fue determinada a través del ensayo potencial reductor férrico (PRF).
Resultados: Encontramos que los pacientes tienen una CAT en suero significativamente menor que la de los sujetos controles (p 0.001). No encontramos asociación entre la CAT y el género o la edad en pacientes y controles, ni entre la CAT y la edad de inicio o la duración de la enfermedad en los pacientes enfermos. Obtuvimos una correlación con un nivel de significación marginal entre la CAT y el número de repeticiones de CAG (r = -0.33; p = 0.06).
Conclusión: Este estudio da fundamento a la hipótesis de la existencia de estrés oxidativo en la SCA2, y sugiere implicaciones terapéuticas para esta enfermedad.
REFERENCIAS (EN ESTE ARTÍCULO)
Auburger G, Orozco G, Capote RF, Sánchez SG, Pérez MP, Cueto ME, Meneses MG, Farral M, Williamson R, Chamberlain S. Autosomal dominant ataxia: genetic evidence for locus heterogeneity from a Cuban founder effect population. Am J Hum Genet 1990; 46: 1163-77.
Orozco G, Nodarse FA, Auburger G. Autosomal dominant cerebellar ataxia: clinical analysis of 263 patients from a homogeneous population in Holguín, Cuba. Neurology 1990; 40: 1369-75.
Schiller F. Staggering gait in medical history. Ann Neurol 1995; 37(1): 127-35.
Imbert G, Saudou F, Yvert G, Devys D, Trottier Y, Garnier J-M, Weber C, Mandel J-L, Cancel G, Abbas N, Dürr A, Didierjean O, Stevanin G, Agid Y, Brice A. Cloning of the gene for spinocerebellar ataxia 2 reveals a locus with high sensitivity to expanded CAG/glutamine repeats. Nature Genet 1996; 14: 285-91.
Pulst SM, Nechiporuk A, Nechiporuk T, Gispert S, Chen X-N, Lopes-Cendes I, Pearlman S, Starkman S, Orozco G, Lunkes A, DeJong P, Rouleau GA, Auburger G, Korenberg JR, Figueroa C, Sahba S. Moderate expansion of a normally biallelic trinucleotide repeat in spinocerebellar ataxia type 2. Nature Genet 1996; 14: 269-76.
Sanpei K, Takano H, Igarashi S, Sato T, Oyake M, Sasaki H, Wakisaka A, Tashiro K, Ishida Y, Ikeuchi T, Koide R, Saito M, Sato A, Tanaka T, Hanyu S, Takiyama Y, Nishizawa M, Shimizu N, Nomura Y, Segawa M, Iwabuchi K, Eguchi I, Tanaka H, Takahashi H, Tsuji S. Identification of the spinocerebellar ataxia type 2 gene using a direct identification of repeat expansion and cloning technique DIRECT. Nature Genet 1996; 14, 277-84.
Klockgether T, Evert B. Genes involved in hereditary ataxias. Trends Neurosci 1998; 21: 413-8.
Holmes SE, O’Hearn EE, McInnis MG, Gorelick-Feldman DA, Kleiderlein JJ, Callahan C, et al. Expansion of a novel CAG trinucleotide repeat in the 5-prime region of PPP2R2B is associated with SCA12. Nature Genet 1999; 23: 391-2.
Nakamura K, Jeong SY, Uchihara T, Anno M, Nagashima K, Nagashima T, et al. SCA17, a novel autosomal dominant cerebellar ataxia caused by an expanded polyglutamine in TATA-binding protein. Hum Mol Genet 2001; 10(14): 1441-8.
Huntington’s disease collaborative research group. A novel gene containing a trinucleotide repeats that is expanded and unstable on Huntington’s disease chromosomes. Cell 1993; 72: 971-83.
La Spada AR, Wilson EM, Lubahn DB, Harding AE, Fischbeck KH. Androgen receptor gene mutations in X-linked spinal and bulbar muscular atrophy. Nature 1991; 352: 77-9.
Koide R, Ikeuchi T, Onodera O, Tanaka H, Igarashi S, Endo K, et al. Unstable expansion of CAG repeat in hereditary dentatorubral-pallidoluysian atrophy (DRPLA). Nat Genet 1994; 6: 9-13.
Nagafuchi S, Yanagisawa H, Sato K, Shirayama T, Ohsaki E, Bundo M, et al. Dentatorubral and pallidoluysian atrophy expansion of an unstable CAG trinucleotide on chromosome 12p. Nat Genet 1994; 6: 14-8.
Nance M. Brain Pathol 1997; 7: 881-90.
Tabrizi SJ, Workman J, Hart PE, Mangiarini L, Mahal A, Bates G, Cooper JM, Schapira AH. Mitochondrial dysfunction and free radical damage in the Huntington R6/2 transgenic mouse. Ann Neurol 2000; 47(1): 80-6.
Maksimovic ID, Jovanovic MD, Colic M, Mihajlovic R, Micic D, Selakovic V, Ninkovic M, Malicevic Z, Rusic-Stojiljkovic M, Jovicic A. Oxidative damage and metabolic dysfunction in experimental Huntington’s disease: selective vulnerability of the striatum and hippocampus. Vojnosanit Pregl 2001; 58(3): 237-42.
Giuliano P, de Cristofaro T, Affaitati A, Pizzulo GM, Feliciello A, Criscuolo Ch, et al. DNA damage induced by polyglutamine expanded proteins. Human Molecular Genetics 2003; 12(18): 2301-9.
Velázquez L, Sánchez G, García JC, Delgado R, Márquez L, Martínez E, Santos NF, Almaguer LM. Spinocerebellar ataxia type 2 (sca-2) in Cuba. A study of the clinical electrophysiological and redox system variations and its relation with CAG repeats. Restorative Neurology and Neurosciences 2002; 20(6): 277.
Sanpei K. The function of spinocerebellar ataxia type 2 (SCA2) gene products, ataxin-2 and the mechanism of pathogenesis for SCA2. Nippon Rinsho 1999; 57(4): 822-4.
Bahr P, Basulto Y. El Potencial Reductor Férrico (FRP). Un ensayo para evaluar la capacidad antioxidante en suero. Rev Corr Cient Méd Holguín 2004; 8(4).
Benzie IFF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal Biochem 1996; 239: 70-6.
Kunkel LM, Smith KD, Boyer SM, Borgaonkar DS, Wachtel SS, Miller OS, et al. Analysis of human Y-chromosome-specific reiterated DNA in chromosome variants. Proc Nat Acad Sci USA 1997; 74: 1245-9.
Santos N, Aguiar J, Fernández J, Vázquez M, Auburger J, Gispert S, Mendoza I, García J, Velázquez L. Diagnóstico molecular de una muestra de la población cubana con ataxia espinocerebelosa tipo 2. Biotecn Apl 1999; 16(4): 219-22.
Prior RL, Cao G. In vivo total antioxidant capacity: comparison of different analytical methods. Free Radic. Biol Med 1999; 27: 1173-81.
Serra JA, Dominguez RO, de Lustig ES, Guareschi EM, Famulari AL, Bartolome EL, Marschoff ER. Parkinson’s disease is associated with oxidative stress: comparison of peripheral antioxidant profiles in living Parkinson’s, Alzheimer’s and vascular dementia patients. J Neural Transm 2001; 108(10): 1135-48.
Sinclair AJ, Bayer AJ, Johnston J, Warner C, Maxwell SR. Altered plasma antioxidant status in subjects with Alzheimer’s disease and vascular dementia. Int J Geriatr Psychiatry 1998; 13(12): 840-5.
Serra JA, Marschoff ER, Domínguez RO, de Lustig ES, Famulari AL, Bartolome EL, Guareschi EM. Comparison of the determination of superoxide dismutase and antioxidant capacity in neurological patients using two different procedures. Clin Chim Acta 2000; 301(1-2): 87-102.
Cao G, Prior RL. Measurement of oxygen radical absorbance capacity in biological samples. Methods Enzymol 1999; 299: 50-62.
Bartosz G. Total antioxidant capacity. Adv Clin Chem 2003; 37: 219-92.
Aejmelaeus RT, Holm P, Kaukinen U, Metsä-Ketelä TJA, Laippala P, Hervonen ALJ, Alho HER. Age-related changes in the peroxyl radical scavenging capacity of human plasma. Free Radic Biol Med 1997; 23: 69-75.
Feillet-Coudray C, Tourtauchaux R, Niculescu M, Rock E, Tauveron I, Alexandre-Gouabau MC. Plasma levels of 8-epiPGF2alpha, an in vivo marker of oxidative stress, are not affected by aging or Alzheimer’s disease. Free Radic Biol Med 1999; 27: 463-9.
Pieri C, Testa R, Marra M, Bonfigli AR, Manfrini S y Testa I. Age-dependent changes of serum oxygen radical scavenger capacity and haemoglobin glycosylation in non-insulin-dependent diabetic patients. Gerontology 2001; 47: 88-92.
Wang XL, Rainwater DL, van de Berg JF, Mitchell BD, Mahaney MC. Genetic contributions to plasma total antioxidant activity. Arterioscler Thromb Vasc Biol 2001; 21: 1190-5.
Ziobro A, Bartosz G. A comparison of the total antioxidant capacity of some human bogy fluids. Molecular Biology Letters 2003; 8: 415–9.