2016, Número 3
Respuesta inmune en la infección por el virus del Ébola
Alonso RA, Pérez CM, Pardo MD, Piloto OY, Ojeda MB, Casenave-Cambet RR
Idioma: Español
Referencias bibliográficas: 30
Paginas: 313-319
Archivo PDF: 177.77 Kb.
RESUMEN
El virus del Ébola pertenece a la familia de los filovirus y produce una fiebre hemorrágica con una elevada letalidad. Los pacientes afectados muestran una respuesta inmune deteriorada como consecuencia de los mecanismos de evasión del virus. La catepsina es una enzima presente en los gránulos de los fagocitos que escinde las glicoproteínas de la superficie viral, permitiendo al virus la entrada a la célula anfitriona. Por otro lado, este virus es resistente a los efectos antivirales del interferón tipo I, promueve la síntesis de citoquinas proinflamatorias e induce la apoptosis de los monocitos y los linfocitos. Otros efectos del mismo son: inducir una activación incompleta de las células dendríticas con lo que evita la presentación de los antígenos virales. A pesar de que después de la primera semana se producen anticuerpos específicos, estos tienen una capacidad neutralizante dudosa. El virus evade la respuesta inmune y se replica de forma incontrolada en el hospedero. Se realizó este trabajo con el propósito de resumir los principales aspectos relacionados con las particularidades de la respuesta inmune durante la infección por el virus del Ébola.
REFERENCIAS (EN ESTE ARTÍCULO)
Kasper DL, Faucy AS, Longo DL, Braunwald E, Hauser SL, Jameson JL. Virus de Marburgo y Ébola. En: Harrison. Principios de Medicina Interna. Madrid: McGraw-Hill; 2006. p. 181
Sheng MM, Zhong Y, Chen Y, Du JC, Yu XW, Zhao C, et al. Hsa-miR-1246, hsa-miR-320a and hsa-miR-196b-5p inhibitors can reduce the cytotoxicity of Ebola virus glycoprotein in vitro. Sci China Life Sci. 2014;57(10):959-72
Feldmann H, Geisbert TW. Ebola haemorrhagic fever. Lancet. 2011;377(9768):849-62
Sobarzo A, Groseth A, Dolnik O, Becker S, Lutwama JJ, Perelman E, et al. Profile and Persistence of the Virus-Specific Neutralizing Humoral Immune Response inof Sudan Ebolavirus (Gulu). J Infect D. 2013;208(2):299-309
Lennemann NJ, Rhein BA, Ndungo E, Chandran K, Qiu X, Maury W. Comprehensive Functional Analysis of N-Linked Glycans on Ebola Virus GP1. mBio. 2014;5(1):1-9
Wong G, Kobinger GP, Qui X. Characterization of host immune responses in Ebola virus infections. Expert Rev Clin Immunol. 2014;10(6):781-90
Mohan GS, Li W, Ye L, Compans RW, Yang C. Antigenic Subversion: A Novel Mechanism of Host Immune Evasion by Ebola Virus. PLoS Pathog [revista en Internet]. 2012 [citado 23 Feb 2016];8(12):[aprox. 23p]. Disponible en: http://journals.plos.org/plospathogens/article?id=10.1371/journal.ppat.1003065
Bah E, Lamah M, Fletcher T, Jacob S, Brett-Major D, Sall A, et al. Clinical Presentation of Patients with Ebola Virus Disease in Conakry, Guinea. N Engl J Med. 2015;372:40-7
Philips J. Ebola Virus Disease Epidemic. Workplace Health Saf. 2014;62(14):484
Chertow DS, Kleine Ch, Edwards JK, Scaini R, Giuliani R, Sprecher A. Ebola Virus Disease in West Africa - Clinical Manifestations and Management. N Engl J Med. 2014;371:2054-7
Organización Mundial de la Salud. Declaración de la OMS sobre la tercera reunión del Comité de Emergencia del Reglamento Sanitario Internacional acerca del brote de enfermedad por el virus del Ébola de 2014 en África Occidental [Internet]. Ginebra: OMS; 2015 [citado 23 Feb 2016]. Disponible en: http://www.who.int/mediacentre/news/statements/2015/ihr-ebola-8th-meeting/es/
Ansari AA. Clinical features and pathobiology of Ebolavirus infection. J Autoimmun. 2014;55:1-9
Brudner M, Karpel M, Lear C, Chen L, Yantosca LM, Scully C, et al. Lectin-Dependent Enhancement of Ebola Virus Infection via Soluble and Transmembrane C-type Lectin Receptors. PLoS ONE [revista en Internet]. 2013 [citado 12 Ene 2016];8(4):[aprox. 12p]. Disponible en: http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0060838
Gnirss K, Kühl A, Karsten C, Glowacka D, Bertram S, Kaup F, et al. Cathepsins B and L activate Ebola but not Marburg virus glycoproteins for efficient entry into cell lines and macrophages independent of TMPRSS2 expression. Virology. 2012;424(1):3-10
Lee JE, Saphire EO. Ebolavirus glycoprotein structure and mechanism of entry. Future Virol. 2009;4(6):621-35
Gupta M, Spiropoulou C, Rollin PE. Ebola virus infection of human PBMCs causes massive death of macrophages, CD4 and CD8 T cell sub-populations in vitro. Virology. 2007;364(1):45-54
Okumura A, Pitha PM, Yoshimura A, Harty RN. Interaction between Ebola Virus Glycoprotein and Host Toll-Like Receptor 4 Leads to Induction of Proinflammatory Cytokines and SOCS1. J Virol. 2010;84(1):27-33
Ayithan N, Bradfute SB, Anthony SM, Stuthman KS, Dye JM, Bavari S, et al. Ebola Virus-Like Particles Stimulate Type I Interferons and Proinflammatory Cytokine Expression Through the Toll-Like Receptor and Interferon Signaling Pathways. J Interferon Cytokine Res. 2014;34(2):79-89
Martínez O, Valmas C, Basler CF. Ebola virus-like particle-induced activation of NF-κB and Erk signaling in human dendritic cells requires the glycoprotein mucin domain. Virology. 2007;364(2):342-54
Kindrachuk J, Wahl-Jensen V, Safronetz D, Trost B, Hoenen T, Arsenault R, et al. Ebola Virus Modulates Transforming Growth Factor β Signaling and Cellular Markers of Mesenchyme-Like Transition in Hepatocytes. J Virol. 2014;88(17):9877-92
Xu W, Edwards MR, Borek DM, Feagins AR, Mittal A, Alinger JB. Ebola Virus VP24 Targets a Unique NLS Binding Site on Karyopherin Alpha 5 to Selectively Compete with Nuclear Import of Phosphorylated STAT1. Cell Host Microbe. 2014;16(2):187-200
García-Dorival I, Wu W, Dowall S, Armstrong S, Touzelet O, Wastling J, et al. Elucidation of the Ebola Virus VP24 Cellular Interactome and Disruption of Virus Biology of through Targeted Inhibition of Host-Cell Protein Function. J Proteome Res. 2014;13:5120-35
Ramanan P, Shabman RS, Brown CS, Amarasinghe GK, Basler CF, Leung DW. Filoviral Immune Evasion Mechanisms. Viruses. 2011;3(9):1634-49
Lubaki NM, Ilinykh P, Pietzsch C, Tigabu B, Freiberg AN, Koup RA, et al. The Lack of Maturation of Ebola Virus-Infected Dendritic Cells Results from the Cooperative Effect of at Least Two Viral Domains. J Virol. 2013;88(13):7471-85
Chippaux JP. Outbreaks of Ebola virus disease in Africa: the beginnings of a tragic saga. J Venom Anim Toxins Incl Trop Dis. 2014;20:44
Sobarzo A, Lutwama JJ, Guttman O, Kuehne AI, Yavelsky V. Persistent Immune Responses after Ebola Virus Infection. N Engl J Med. 2013;369:492-3
Qiu X, Audet S, Wong G, Fernando L, Bello A, Pillet S, et al. Sustained protection against Ebola virus infection following treatment of infected nonhuman primates with ZMAb. Sci Rep [revista en Internet]. 2013 [citado 13 Ene 2016];3:[aprox. 18p]. Disponible en: http://www.nature.com/articles/srep03365
Pettitt J, Zeitlin L, Kim DH, Working C, Johnson JC, Bohorov O, et al. Therapeutic Intervention of Ebola Virus Infection in Rhesus Macaques with the MB-003 Monoclonal Antibody Cocktail. Sci Transl Med. 2013;5(199):199ra113
Shedlock DJ, Bailey MA, Popernack PM, Cunningham JM, Burton DR, Sullivan NJ. Antibody-mediated neutralization of Ebola virus can occur by two distinct mechanisms. Virology. 2010;401(2):228-35
Camacho A, Carroll MW, Dean NE, Doumbia M, Edmunds WJ, Egger M, et al. The ring vaccination trial: a novel cluster randomised controlled trial design to evaluate vaccine efficacy and effectiveness during outbreaks, with special reference to Ebola. BMJ. 2015;(351):1-8