2016, Número 2
<< Anterior Siguiente >>
Rev Mex Patol Clin Med Lab 2016; 63 (2)
Helicobacter pylori: mecanismos de patogenicidad
Cervantes-García E
Idioma: Ingles.
Referencias bibliográficas: 63
Paginas: 100-109
Archivo PDF: 375.97 Kb.
RESUMEN
Helicobacter pylori es una bacteria Gram negativa microaerofílica que coloniza el estómago de los humanos. La infección por
H. pylori afecta a más de 50% de la población mundial y es la causa principal de enfermedades como úlceras gástricas y duodenales, y cáncer gástrico. En México, la erradicación de la infección por
H. pylori es una prioridad por la elevada seroprevalencia que hay; sin embargo, existe poca información acerca de las tasas de resistencia a antibióticos en aislamientos de
H. pylori en nuestro país. El incremento en la resistencia a antibióticos constituye un problema mundial que dificulta el tratamiento de las infecciones por esta bacteria. Se conoce que la mayoría de las personas infectadas no presentan síntomas debido a que la patogénesis que desarrolla este microorganismo depende de diferentes factores de virulencia, que incluyen características del hospedero y el ambiente en que se desarrolla. El objetivo de este trabajo fue revisar y actualizar nuestro conocimiento sobre los mecanismos de patogenia y factores de virulencia involucrados en las enfermedades por
H. pylori que conducen al desarrollo de infecciones severas y, por tanto, ayudar en el tratamiento eficaz para erradicar la infección en nuestra población, que tiene alta prevalencia de
H. pylori.
REFERENCIAS (EN ESTE ARTÍCULO)
Cervantes-García E. Helicobacter pylori e infecciones asociadas. Rev Fac Med. 2006; 49: 163-168.
Atherton JC. The pathogenesis of Helicobacter pylori-induced gastro-duodenal diseases. Annu Rev Pathol. 2006; 1: 63-96.
Scheiber S, Konradt M, Groll C, Scheid P, Hanauer G. The spatial orientation of Helicobacter pylori in the gastric mucus. Proc Natl Acad Sci USA. 2004; 101 (14): 5024-5029.
Yamaoka Y. Pathogenesis of Helicobacter pylori-related gastroduodenal diseases from molecular epidemiological studies. Gastroenterol Res Pract. 2012; 2012: 371503.
Olberman P, Josenhans C, Moodley Y, Ulr M, Stamer C. A global review of genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLOS Genet.6:e1001069.
Kusters JG, van Vliet AH, Kuipers EJ. Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev. 2006; 19 (3): 449-490.
Israel DA, Salama N, Krishna U, Rieger UM, Atherton JC et al. Helicobacter pylori genetic diversity within the gastric niche of a single human host. Proc Natl Acad Sci USA. 2001; 98 (25): 14625-14630.
Suerbaum S, Smith JM, Bapumia K, Morelli G, Smith NH et al. Free recombination within Helicobacter pylori. Proc Natl Acad Sci USA. 1998; 95 (21): 12619-12624.
Ge Z, Taylor DE. Contributions of genome sequencing to understanding the biology of Helicobacter pylori. Annu Rev Microbiol. 1999; 53: 353-87.
Dunne C, Dolan B, Clyne M. Factors that mediate colonization of human stomach by Helicobacter pylori. World J Gastroenterol. 2014; 20 (19): 5610-5624.
Delahay RM, Rugge M. Pathogenesis of Helicobacter pylori infection. Helicobacter. 2012; 17: 9-15.
Tomb JF, White O, Kerlanvage AR, Clayton RA, Sutton GG et al. The complete genome sequence of gastric pathogen Helicobacter pylori. Nature. 1997; 388 (6642): 539-547.
Alm RA, Ling CS, Moir DT, King BC, Brown ED, Jiang Q et al. Genomic sequence comparison of two unrelated isolates of the human gastric pathogen Helicobacter pylori. Nature. 1999; 397 (6715): 176-180.
Weeks DL, Eskandari S, Scott DR, Sacks G. A H+ gated urea channel: the link between Helicobacter pylori urease and gastric colonization. Science. 2000; 287 (5452): 482-485.
Cervantes-García E, García-González R. Helicobacter pylori y la respuesta inmune. Rev Latinoam Patol Clin Med Lab. 2015; 62 (2): 112-118.
Mobley HL. The role of urease in the pathogenesis of gastritis and peptic ulceration. Aliment Pharmacol Ther. 1996; 10: 57-64.
Gutierrez O, Gomez M, Castillo Moreno B. La infección gástrica por Helicobacter pylori modifica la secreción de ácido. Rev Fac Med UN Col. 2001; 49: 76-80.
Bauerfeind P, Garner R, Dunn BE, Mobley HL. Syntesis and activity of Helicobacter pylori urease and catalase at low pH. Gut. 1997; 40 (1): 25-30.
Geis G, Suerbaum S, Forsthoff B, Leying H, Opferkuck W. Ultrastructure and biochemical studies of flagellar sheath of Helicobacter pylori. J Med Microbiol. 1993; 38: 371-377.
Josenhans C, Labigne A, Suerbaum S. Comparative ultrastructural and functional studies of Helicobacter pylori and Helicobacter mustela flagelin submits FlaA and FlaB are necessary for full motility in Helicobacter species. J Bacteriol. 1995; 177 (11): 310-320.
Alm R, Bina J, Andrews BM. Comparative genomics of Helicobacter pylori analysis of the outer membrane protein families. Infect Immun. 2000; 68 (7): 4155-4168.
Cover T. Role of Helicobacter pylori outer membrane proteins in gastroduodenal disease. J Infect Dis. 2006; 194 (10): 1343-1355.
Magalhães A, Reis CA. Helicobacter pylori adhesion to gastric epithelial cells is mediated by glycan receptors. Braz J Med Biol Res. 2010; 43 (7): 611-618.
Odenbreit S. Adherence properties of Helicobacter pylori: impact in pathogens and adaptation to the host. Int J Med Microbiol. 2005; 295 (5): 317-324.
Shiota S, Suzuki R, Yamaoka Y. The significance of virulence factors in Helicobacter pylori. J Dig Dis. 2013; 14 (7): 341-349.
Yamaoka Y, Ojo O, Fujimoto S. Helicobacter pylori outer membrane proteins and gastroduodenal disease. Gut. 2006; 55: 775-781.
Ishijama N, Suzuki M, Ashida H, Ichikawa Y, Kanegae Y, Saito I et al. BabA-mediated adherence is a potentiator of the Helicobacter pylori type IV secretion system activity. J Biol Chem. 2011; 286 (28): 25256-25264.
Paniagua GL, Monroy E, Rodriguez R, Arroniz S, Rodriguez C et al. Frequency of vacA, cagA and babA2 virulence markers in Helicobacter pylori strains isolated from mexican patients with chronic gastritis. Ann Clin Microbiol Antimicrob. 2009; 30: 8-14.
Barragan VC, Gutiérrez EJ, Casteblanco RL. Membrana externa de Helicobacter pylori y su papel en la adhesión al epitelio gástrico. UN Med. 2014; 56: 44-62.
Nyström J, Svennerholm AM. Oral immunization with HpaA affords therapeutic protective immunity against Helicobacter pylori that is reflected by specific mucosal immune responses. Vaccine. 2007; 25: 2591-2598.
Asphaloum M, Olaft FO, Nordén J, Sondén B et al. SabA is the Helicobacter pylori hemagglutinin and is polymorphic in binding to sialylated gyycans. PloS Pathog. 2006; 2 (10): e110.
Mahanavi J. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science. 2002; 297 (5581): 573-578.
Yamaoka Y. Increasing evidence of Helicobacter pylori SabA in the pathogenesis of gastroduodenal disease. J Infect Dev Ctries. 2008; 2 (3): 174-181.
Yamaoka Y. Mechanisms of disease: Helicobacter pylori virulence factors. Nat Rev Gastroenterol Hepatol. 2010; 7 (11): 629-641.
Figueiredo C, Machado JC, Yamaoka Y. Pathogenesis of Helicobacter pylori infection. Helicobacter. 2005; 10: 14-20.
Yamaoka Y, Kwon DH, Graham DY. A M(r) 34,000 proinflammatory outer membrane protein (oipA) of Helicobacter pylori. Proc Natl Acad Sci USA. 2000; 97: 7533-7538.
Jung SW, Sugimoto M, Shiota S, Graham DY, Yamakoa Y. The intact dupA cluster is more reliable Helicobacter pylori virulence marker than DupA alone. Infec Immun. 2012; 80: 381-387.
Hussein NR, Argent RH, Marx CK, Patel SR. Helicobacter pylori dupA is polymorphic and its active form induces proinflammatory cytokine secretion by mononuclear cells. J Infect Dis. 2010; 202: 261-269.
Boyanova L, Yordanov D, Gergova G, Markovska R, Mitov J. Association of iceA and babA genotypes in helicobater pylori strains with patients and strain characteristics. Antoine Van Leeuwenhoek. 2010; 98 (3): 343-350.
Van Doorn LJ, Figueiredo C, Sanna R et al. Clinical relevance of the cagA, vacA, and iceA status of Helicobacter pylori. Gastroenterology. 1998; 115 (1): 58-66.
Peek RM Jr, Thompson SA, Donahue JP et al. Adherence to gastric epithelial cells induces expression of a Helicobacter pylori gene, iceA, that is associated with clinical outcome. Proc Assoc Am Physicians. 1998; 110 (6): 531-544.
Fu HW. Helicobacter pylori neutrophil-activating protein: From molecular pathogenesis to clinical applications. World J Gastroenterol. 2014; 20 (18): 5294-5301.
Cappon A, Babolin C, Segat D, Cancian L, Amadei A et al. Helicobacter pylori derived neutrophil-activating protein increases the lifespan of monocytes and neutrophils. Cell Microbiol. 2010; 12: 754-764.
Long M, Luo J, Li Y, Zeng FY, Li M. Detection and evolution of antibodies against neutrophil-activing proteins of Helicobacter pylori in patients with gastric cancer. World J Gastroenterol. 2009; 15 (19): 2381-1388.
Olczak AA. Association of Helicobacter pylori antioxidant activities with host colonization proficiency. Infect Immun. 2003; 71: 580-583.
Wang G, Alamuri P, Maier RJ. The diverse antioxidant system of Helicobacter pylori. Mol Microbiol. 2006; 61: 847-860.
Stent A, Every AL, Sutton P. Helicobacter pylori against oxidative attack. Am J Physiol Gastrointest Liver Physiol. 2012; 302 (6): G579-587.
Lindén S, Semino-Mora C, Liu H, Rick J, Dubois A. Role of mucin Lewis status in resistance to Helicobacter pylori infection in pediatric patients. Helicobacter. 2010; 15: 251-258.
Issa S, Moran AP, Ustinov SN, Lin JH, Ligtenberg AJ. O-linked oligosaccharides from salivary agglutinin: Helicobacter pylori binding sialyl-Lewis x and Lewis b are terminating moieties on hyperfucosylated oligo-N-acetyllactosamine. Glycobiology. 2010; 20 (8): 1046-1057.
Jaff MS. Relation between ABO blood groups and Helicobacter pylori infection in syntomatic patients. Clin Exp Gastroenteral. 2011; 4: 221-226.
Atherton JC, Cao P, Peek RM Jr, Tumuru MK, Blaser MJ, Cover TL. Mossaicism in vacuolating cytotoxin alleles of Helicobacter pylori association of specific vacAAAA types with cytotoxin production and peptic ulceration. J Biol Chem. 1995; 270 (30): 17771-17777.
Rhead JL, Lettey DP, Mohammadi M, Hussein N, Mohagheghi MA et al. A new Helicobacter pylori vacuolating citotoxin determinant, the intermediate region, is associated with gastric cancer. Gastroenterology. 2007; 133: 926-936.
Atherton JC, Peek RM Jr, Tham KT, Cover TL, Blasser MJ. Clinical and pathological importance of heterogeneity in vacA, vacuolating citotoxin gene of Helicobacter pylori. Gastroenterology. 1997; 112: 92-99.
Yamaoka Y, Kodama T, Kita M, Imanishi J, Kashima K, Graham DY. Relationship of vacA genotypes of Helicobacter pylori cagA status cytotoxin production, and clinical outcome. Helicobacter. 1998; 3 (4): 241-253.
Cover T, Blanke SR. Helicobacter pylori vacA, a paradigm for toxin multifuncionality. Nat Rev Microbiol. 2005; 3: 320-332.
Akopyants NS, Clifton SW, Kersulyte D, Crabtree, BE Youree et al. Analysis of the cag pathogenicity island of Helicobacter pylori. Mol Microbiol 1998; 28 (1): 37-53.
Olbermann P, Josenhans C, Moodley Y, Uhr M, Stamer C. A global overview of the genetic and functional diversity in the Helicobacter pylori cag pathogenicity island. PLoS Genet. 2010; 6 (8): e1001069.
Tegtmeyer N, Wessler S, Backert S. Role of cag-pathogenicity island encoded type IV secretion system in Helicobacter pylori pathogenesis. FEBS J. 2011; 278 (8): 1190-1202.
Figueiredo C, Quint W, Nouhan N, van den Munckhof H, Herbrink P, Schepernisse J et al. Assessment of Helicobacter pylori vacA and cagA genotypes and host serological response. J Clin Microbiol. 2001; 39 (4): 1339-1344.
Jones KR, Joo YM, Jang S, Yoo YJ, Lee SH, Chung IS, Olsen CH. Polymorphism in CagA EPIYA motif impacts development of gastric cancer. J Clin Microbiol. 2009; 47: 959-968.
Panayotopoulou E, Sgouras D, Papadokos K, Kalharopopenlas A. Strategy to characterize the numbers and type of repeating EPYA phosphorylation motifs in carboxyl terminus of CagA protein in Helicobacter pylori clinical isolates. J Clin Microbiol. 2006; 45: 4888-4895.
Tohidpour A. CagA-mediated pathogenesis of Helicobacter pylori. Microb Pathog. 2016; 93: 44-55.
Roesler BM, Rabelo-Gonçalves EM, Zeitune JM. Virulence factors of Helicobacter pylori: A review. Clin Med Insights Gastroenterol. 2014; 7: 9-17.