2015, Número 3-4
<< Anterior
Rev Mex Med Fis Rehab 2015; 27 (3-4)
Hernia discal masiva: rehabilitación. Revisión a propósito de un caso
Domínguez-Carrillo LG, Alcocer-Maldonado JL, Domínguez-Gasca LG
Idioma: Español
Referencias bibliográficas: 50
Paginas: 86-93
Archivo PDF: 329.95 Kb.
RESUMEN
Antecedentes: La hernia discal masiva (ocupando 50% o más del canal vertebral) a la vista del neurocirujano y del ortopedista tienen indicación quirúrgica. No obstante en varios estudios a lo largo del tiempo se ha demostrado que a mayor volumen de la hernia discal, existe mayor posibilidad de que ésta disminuya su tamaño con tratamiento conservador.
Caso clínico: Femenino de 24 años con datos clínicos lumbalgia con compresión radicular L5, postesfuerzo, con resonancia magnética nuclear demostrando hernia discal masiva, manejada conservadoramente en rehabilitación, con resolución completa a los seis meses del evento.
Conclusiones: a) A mayor volumen de la hernia discal existe mayor posibilidad de resorción, no estando incrementado el riesgo de síndrome de cauda equina o daño radicular; b) el tratamiento conservador con rehabilitación de la hernia discal masiva resuelve más del 80% de los casos.
REFERENCIAS (EN ESTE ARTÍCULO)
Weber H. Lumbar disc herniation. A controlled, prospective study with ten years of observation. Spine. 1983; 8: 131-140.
Weinstein JN, Tosteson TD, Lurie JD, Tosteson AN, Hanscom B et al. Surgical vs non operative treatment for lumbar disk herniation: the Spine Patient Outcomes Research Trial (SPORT): a randomized trial. JAMA. 2006; 296: 2441-2450.
Chang HJ, Nam SC, Kwang HS, Hyo SL. Massive lumbar disc herniation with complete dural sac stenosis. Indian J Orthop. 2013; 47: 244-249.
Key JA. Intervertebral disc lesions are the most common cause of low back pain with or without sciatica. Ann Surg. 1945; 121: 534-544.
Benson RT, Tavares SP, Robertson SC, Sharp R, Marshall RW. Conservatively treated massive prolapsed discs: a 7-year follow-up. Ann R Coll Surg Engl. 2010; 92: 147-153.
Domínguez CL, Alcocer MJ, Domínguez GL. Hernia discal masiva: ¿tratamiento quirúrgico o conservador? Acta Med. 2015; 13: 55-56.
Atlas SJ, Keller RB, Chang Y, Deyo RA, Singer DE. Surgical and nonsurgical management of sciatica secondary to a lumbar disc herniation: five-year outcomes from the Maine Lumbar Spine Study. Spine. 2001; 26: 1179-1187.
Cribb GL, Jaffray DC, Cassar-Pullicino VN. Observations on the natural history of massive lumbar disc herniation. J Bone Joint Surg Br. 2007; 89: 782-784.
White AA, Panjabi MM. The basic kinematic of the human spine: a review of past and current knowledge. Spine. 1978; 3: 12-20.
Kurutz M. Age-sensitivity of time-related in vivo deformability of human lumbar motion segments and discs in pure centric tension. J Biomech. 2006; 39: 147-157.
Nachemson A, Morris J. Lumbar discometry lumbar intradiscal pressure measurements in vivo. Lancet. 1963; 25: 1140-1142.
Schmitd H, Kettler A, Heuer F, Simon V, Claes L, Wilke HS. Intradiscal pressure, shear strain, and fiber strain in the intervertebral disc under combined loading. Spine. 2007; 32: 748-755.
Smith LJ, Fazzalari NL. Regional variations in the density and arrangement of elastic fibres in the anulus fibrosus of the human lumbar disc. J Anat. 2006; 209: 359-367.
Hickey AS, Hukins DW. Relation between the structure of the annulus fibrous and the function and the failure of the intervertebral disc. Spine. 1980; 5: 106-116.
Akhtar S, Davies JR, Caterson B. Ultrastructural localization and distribution of proteoglycan in normal and scoliotic lumbar disc. Spine. 2005; 30: 1303-1309.
Nachemson A. Disc pressure measurements. Spine. 1981; 6: 93-97.
Wilke HJ, Neef P, Caimi M, Hoogland T, Claes LE. New in vivo measurements of pressures in the intervertebral disc in daily life. Spine. 1999; 24: 755-762.
Guinto FC Jr, Hashim H, Stumer M. CT demonstration of disk regression after conservative therapy. AJNR Am J Neuroradiol. 1984; 5: 632-633.
Pezowicz C, Schechtman H, Robertson PA, Broom N. Mechanisms of anular failure resulting from excessive intradiscal pressure: a microstructural-micromechanical investigation. Spine. 2006; 31: 2891-2903.
Hukins DW, Meaking JR. Relationship between structure and mechanical function of the tissues of the intervertebral joint. Amer Zool. 2000; 40: 42-52.
Ieucern ST. Lumbar intervertebral disc herniation following experimental intradiscal pressure increases. Acta Neurochir (Wien). 2000; 12: 669-676.
Tkaczuk H. Tensure properties of human lumbar longitudinal ligaments. Acta Orthop Sacand. 1968; Supp 115: 11-69.
Teplick JG, Haskin ME. Spontaneous regression of herniated nucleus pulposus. AJR Am J Roentgenol. 1985; 145: 371-375.
Ahn SH, Ahn MW, Byun WM. Effect of the transligamentous extension of lumbar disc herniations on their regression and the clinical outcome of sciatica. Spine. 2000; 25: 475-480.
Masui T, Yukawa Y, Nakamura S, Kajino G, Matsubara Y, Kato F et al. Natural history of patients with lumbar disc herniation observed by magnetic resonance imaging for minimum 7 years. J Spinal Disord Tech. 2005; 18: 121-126.
Saal JA, Saal JS, Herzog RJ. The natural history of lumbar intervertebral disc extrusions treated nonoperatively. Spine. 1990; 15: 683-686.
Maigne JY, Rime B, Deligne B. Computed tomographic follow-up study of fortyeight cases of nonoperatively treated of lumbar intervertebral disc herniation. Spine. 1992; 17: 1071-1074.
Bush K, Cowan N, Katz DE, Gishen P. The natural history of sciatica associated with disc pathology. A prospective study with clinical and independent radiologic follow-up. Spine. 1992; 17: 1205-1212.
Bozzao A, Gallucci M, Masciocchi C, Aprile I, Barile A, Passariello R. Lumbar disk herniation: MR imaging assessment of natural history in patients treated without surgery. Radiology. 1992; 185: 135-141.
Modic MT, Ross JS, Obuchowski NA, Browning KH, Cianflocco AJ, Mazanec DJ. Contrast-enhanced MR imaging in acute lumbar radiculopathy: a pilot study of the natural history. Radiology. 1995; 195: 429-435.
Reddy UV, Agrawal A, Hegde KV, Suneetha P, Rao MG. Spontaneously disappearing large herniated lumbar disc fragment. J Orthop Allied Sci. 2014; 2: 26-28.
Lapuyade G, Loustau JM. Spontaneous regression of disk herniation. Apropos of 7 cases. J Radiol. 1989; 70: 697-702.
Ellenberg M, Reina N, Ross M, Chodoroff G, Honet JC, Gross N. Regression of herniated nucleus pulposus: two patients with lumbar radiculopathy. Arc Phys Med Rehabil. 1989; 70: 842-844.
Keskil S, Ayberk G, Evliyaoðlu C, Kizartici T, Yücel E, Anbarci H. Spontaneous resolution of “protruded” lumbar discs. Minim Invasive Neurosurg. 2004; 47: 226-229.
Ushewokunze S, Abbas N, Dardis R, Killeen I. Spontaneously disappearing lumbar disc protrusion. Br J Gen Pract. 2008; 58: 646-647.
Ryu SJ, Kim IS. Spontaneous regression of a large lumbar disc extrusion. J Korean Neurosurg Soc. 2010; 48: 285-287.
Kil JS, Eom KS, Park JT, Moon SK, Kim TY. Spontaneous regression of lumbar herniated intervertebral disc. Korean J Spine. 2010; 7: 34-36.
Maigne JY, Deligne L. Computed tomographic follow-up study of 21 cases non-operativevely treated cervical intervertebral disc herniation. Spine. 1994; 19: 189-191.
Mochida K, Komori H, Okawa A, Muneta T, Haro H, Shinomiya K. Regression of cervical disc herniation observed on magnetic resonance images. Spine. 1998; 23: 990-995.
Satoh K, Konno S, Nishiyama K, Olmarker K, Kikuchi S. Presence and distribution of antigen-antibody complexes in the herniated nucleus pulposus. Spine. 1999; 24: 1980-1984.
Haro H, Crawford HC, Fingleton B, MacDougall JR, Shinomiya K et al. Matrix metalloproteinase-3-dependent generation of a macrophage chemoattractant in a model of herniated disc resorption. J Clin Invest. 2000; 105: 133-141.
Ozaki S, Muro T, Ito S, Mizushima M. Neovascularization of the outermost area of herniated lumbar intervertebral discs. J Orthop Sci. 1999; 4: 286-292.
Haro H, Komori H, Kato T, Hara Y, Tagawa M et al. Experimental studies on the effects of recombinant human matrix metalloproteinases on herniated disc tissues – how to facilitate the natural resorption process of herniated discs. J Orthop Res. 2005; 23: 412-419.
Yoshida M, Nakamura T, Sei A et al. Intervertebral disc cells produce tumor necrosis factor alpha, interleukin-1 beta, and monocyte chemoattractant protein-1 immediately after herniation: an experimental study using a new hernia model. Spine. 2005; 30: 55-61.
Ito T, Yamada M, Ikuta F, Fukuda T, Hoshi SI et al. Histologic evidence of absorption of sequestration-type herniated disc. Spine. 1996; 21: 230-234.
Matsubara Y, Kato F, Mimatsu K, Kajino G, Nakamura S, Nitta H. Serial changes on MRI in lumbar disc herniations treated conservatively. Neuroradiology. 1995; 37: 378-383.
Koike Y, Uzuki M, Kokubun S, Sawai T. Angiogenesis and inflammatory cell infiltration in lumbar disc herniation. Spine. 2003; 28: 1928-1933.
Autio RA, Karppinen J, Niinimäki J et al. Determinants of spontaneous resorption of intervertebral disc herniations. Spine. 2006; 31: 1247-1252.
Peng-fei Y, Fang-Da J, Jin-Tao L, Hong J. Outcomes of conservative treatment for ruptured lumbar disc herniation. Acta Orthop Belg. 2013; 79: 726-730.
Alcántara BM, Flórez GC, Echávarri P, García PF. Escala de incapacidad por dolor lumbar de Oswestry S. Rehabilitación (Madr). 2006; 40: 150-158.