2015, Número 3-4
<< Anterior Siguiente >>
Rev Mex Med Fis Rehab 2015; 27 (3-4)
Aplicación de la terapia robótica para el tratamiento de la mano espástica del adulto con hemiplejía. Artículo de revisión
Meneses CC, Peñaloza PY, Pinzón BMY, Castellanos RJ
Idioma: Español
Referencias bibliográficas: 28
Paginas: 80-85
Archivo PDF: 169.90 Kb.
RESUMEN
Este artículo de revisión es producto de la construcción del referente conceptual de una investigación que se está desarrollando en el marco de la Maestría en Neurorehabilitación de la Universidad Autónoma de Manizales, Colombia, acerca del uso de la terapia robótica para el tratamiento de neurorehabilitación de la mano espástica del adulto con hemiplejía, donde se ha encontrado que los eventos cerebrovasculares son procesos que afectan de manera especial la función de miembros superiores, especialmente el agarre y la manipulación, situaciones que se correlacionan con el compromiso del control motor y el control postural.
Objetivo: Identificar la terapia robótica como una posibilidad de intervención de neurorehabilitación para el tratamiento de la mano espástica del adulto con hemiplejía.
Material y métodos: Se realizó una búsqueda de ensayos controlados aleatorizados de julio a diciembre de 2015 en bases de datos de PubMed, EMBASE, PEDro, Oteseeker; se seleccionaron los artículos que cumplieron los criterios de inclusión para posterior revisión de la literatura encontrada.
Discusión: En la hemiplejía es común encontrar afectación de la función de las extremidades superiores llevando no sólo a dificultad en la realización de los patrones selectivos de movimiento, sino al componente funcional, individual y bilateral, especialmente para la función manual.
Conclusión: Se encontró que la ventaja más importante del uso de la tecnología robótica en intervenciones de neurorehabilitación funcional es la capacidad de entrenamiento por medio de la repetitividad y dosificación del entrenamiento.
REFERENCIAS (EN ESTE ARTÍCULO)
Kapandji IA. Cuadernos de fisiología articular. Tomo I. Miembro Superior. 5ª ed. Madrid: Médica Panamericana; 1999.
Nof SY. Robot ergonomics: optimizing robot work. In. S. Y. Nof (Ed.), Handbook of industrial robotics. New York: John Wiley & Sons, 1985
Mokhtari M. Integration of assistive technology in the information age. ICORR’2001, 7th International Conference on Rehabilitation Robotics. 2001, p. 9.
Várkuti B, Guan C, Pan Y, Phua KS, Ang KK, Kuah CW. Resting state changes in functional connectivity correlate with movement recovery for BCI and robot-assisted upper-extremity training after stroke. Neurorehabil Neural Repair. 2013; 27 (1): 53-62.
Song R, Tong KY, Hu X, Zhou W. Myoelectrically controlled wrist robot for stroke rehabilitation. J Neuroeng Rehabil. 2013; 10: 52.
Frisoli A, Procopio C, Chisari C, Creatini I, Bonfiglio L, Bergamasco M et al. Positive effects of robotic exoskeleton training of upper limb reaching movements after stroke. J Neuroeng Rehabil. 2012; 9: 36.
Huang VS, Krakauer JW. Robotic neurorehabilitation: a computational motor learning perspective. J Neuroeng Rehabil. 2009; 6: 5.
Kamper DG. Restoration of hand function in stroke or spinal cord injury. Neurorehabilitation Technology. 2011; 175-190.
Krebs HI, Hogan N, Volpe BT, Aisen ML, L Edelstein, Diels C. Visión general de los ensayos clínicos con MIT-MANUS: una instalación de neurorehabilitación robot con ayuda. Cuidado de la Salud Technol. 1999; 7 (6): 419-423.
Burgar CG, Lum PS, PC Shor, Machiel Van der Loos HF. Desarrollo de robots para la terapia de rehabilitación: la experiencia Palo Alto VA/Stanford. J Rehabil Res Dev. 2000; 37 (6): 663-673.
Prange GB, Jannink MJ, Groothuis-Oudshoorn CG, Hermens HJ, Ijzerman MJ. Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. J Rehabil Res Dev. 2006; 43 (2): 171-184.
Jones TA, Chu CJ, Grande LA, Gregory AD. Motor skills training enhances lesion-induced structural plasticity in the motor cortex of adult rats. J Neurosci. 1999; 19 (22): 10153-10163.
Kempermann G, Van Praag H, Gage FH. Activity-dependent regulation of neuronal plasticity and self repair. Prog Brain Res. 2000; 127: 35-48.
Staines WR, McIlroy WE, Graham SJ, Black SE. Bilateral movement enhances ipsilesional cortical activity in acute stroke: a pilot functional MRI study. Neurology. 2000; 56 (3): 401-404.
Miller EL, Murray L, Richards L, Zorowitz RD, Bakas T, Clark P et al; American Heart Association Council on Cardiovascular Nursing, and the Stroke Council. Comprehensive overview of nursing and interdisciplinary rehabilitation care of the stroke patient: a scientific statement from the American Heart Association. Stroke. 2010; 41 (10): 2402-2448.
Morles VR. Diseño y control de dispositivos robóticos para la administración temprana de terapias de Neurorehabilitación. [Tesis Doctoral]: Universidad Miguel Hernández de Elche. Departamento de Ingeniería de Sistemas y Automática; 2013.
Varalta V et al. Effects of contralesional robot-assisted hand training in patients with unilateral spatial neglect following stroke: a case series study. J Neuroeng Rehabil. 2014; 11: 160.
Reinkensmeyer DJ, Emken JL, Cramer SC. Robotics, motor learning, and neurologic recovery. Annu Rev Biomed Eng. 2004; 6: 497-525.
Sabater-Navarro J, Badesa F, Morales VR, Garcia N, Azorin J, Perez VC. Experiencias en el desarrollo de un sistema robótico para rehabilitación de miembro superior para pacientes con daño cerebral sobrevenido. Revista Universitaria RUTIC, Norteamérica. 2012; 1: 26-34.
Morales R, Badesa FJ, Garcia-Aracil N, Aranda J, Casals A. Evaluación en un paciente con ictus en fase crónica de un sistema autoadaptativo de neurorehabilitación robótica. Revista Iberoamericana de Automática e Informática Industrial RIAI. 2015; 12: 92-98.
Ren Y. Developing a multi-joint upper limb exoskeleton robot for diagnosis, therapy, and outcome evaluation in neurorehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2013; 21 (3): 490-499.
Narváez Y, Vivas OA, Enriquez SC, Sabater-Navarro JM, García N, Martínez A. Diseño de un dispositivo neumático para rehabilitación de mano mediante funda termoretráctil. Actas de las XXXV Jornadas de Automática. 2014, pp. 423-429.
Pinzón BMY. Alteraciones de la función motora de miembro superior en la hemiplejía. Modelos de Intervención Fisioterapéutica. Mov Cient. 2009; 3 (1): 101-108.
Ceres R, Mañanas MA, Azorín JM. Interfaces y sistemas en rehabilitación y compensación funcional para la autonomía personal y la terapia clínica. Revista Iberoamericana de Automática e Informática Industrial RIAI. 2011; 8 (2): 5-15.
Pérez RR, Costa BU, Cáceres TC, Tormos MJM, Medina CJ, Gómez A EJ. Algoritmo de control anticipatorio assisted-as-needed para neurorrehabilitación funcional de extremidad superior. En: XXX Congreso Anual de la Sociedad Española de Ingeniería Biomédica CASEIB 2012. Libro de actas. San Sebastián, España. 2012, p. 100.
Kamper DG. Restoration of hand function in stroke or spinal cord injury. In: Neurorehabilitation Technology. 2012, pp. 175-190.
WHO Task Force on Stroke and other Cerebrovascular Disorders. World Health Organization. Stroke -1989: report of the WHO Task Force on Stroke and other cerebrovascular disorders. Stroke. 1989; 20: 1407-1431.
Kitago T, Krakauer JW. Motor learning principles for neurorehabilitation. Handb Clin Neurol. 2013; 110: 93-103.