2016, Número 1
<< Anterior
Rev Cuba Endoc 2016; 27 (1)
El órgano adiposo, un arcoiris de regulación metabólica y endocrina
Sánchez JC, Romero CR, Muñoz LV, Rivera RA
Idioma: Español
Referencias bibliográficas: 80
Paginas: 105-119
Archivo PDF: 335.21 Kb.
RESUMEN
Introducción: el adipocito es una célula multifuncional e interviene en la
homeostasis sistémica a través de la producción de adipocinas. Con la presente
revisión se pretende revisar el estado actual del conocimiento respecto al tejido
adiposo, y proponer la consolidación del concepto de órgano adiposo.
Desarrollo: el tejido adiposo está constituido por diferentes tipos de adipocitos, no
solamente el blanco y pardo, sino también el beige, el rosa y la célula estrellada
hepática; todos ellos, además, se integran funcionalmente con células no grasas.
Este hecho permite la evolución hacia el concepto de órgano adiposo, con funciones
metabólicas, endocrinas y regulatorias, tanto a nivel sistémico como local en
algunos órganos, como es el caso del adipocito rosa en la glándula mamaria
lactante, y de la célula estrellada en el hígado. Estas funciones se ejercen a través
de la producción de una gran diversidad de adipocinas, con efectos autocrinos y
paracrinos complejos. La transdiferenciación entre diferentes tipos de adipocitos
permite entender la importancia de la integración de las funciones en el órgano
adiposo. La alteración de la homeostasis de estas células y el desequilibrio en la
producción de adipocinas que ocurre como resultado de la obesidad, genera una
debacle metabólica que conduce al síndrome metabólico.
Conclusiones: el concepto de órgano adiposo permite comprender integralmente
la función de los adipocitos en el contexto de la regulación sistémica. La
investigación sobre los diferentes tipos de adipocitos —y sobre el funcionamiento
del órgano adiposo en conjunto— conducirá a un mejor entendimiento de estos
procesos, tanto a nivel fisiológico, como patológico.
REFERENCIAS (EN ESTE ARTÍCULO)
Reyes J. Características biológicas del tejido adiposo: el adipocito como célula endocrina. Rev Méd Clín Condes. 2012;23(2):136-44.
Rodriguez A, Ezquerro S, Mendez-Gimenez L, Becerril S, Fruhbeck G. Revisiting the adipocyte: a model for integration of cytokine signaling in the regulation of energy metabolism. American Journal of Physiology Endocrinology and Metabolism. 2015;309(8):E691-714.
Sánchez J, López D, Pinzón Ó, Sepúlveda J. Adipocinas y síndrome metabólico: múltiples facetas de un proceso fisiopatológico complejo:[revisión]; Adipokines and metabolic syndrome: multiple aspects of a complex pathophysiological process. Rev Colomb Cardiol. 2010;17(4):167-76.
Zuttion MSSR, Wenceslau CV, Lemos PA, Takimura C, Kerkis I. Células Madre de Tejido Adiposo y la Importancia de la Estandarización de un Modelo Animal para Experimentos Preclínicos. Revista Brasilera de Cardiología Invasiva. 2013;21(3):1-7.
Ibrahim MM. Subcutaneous and visceral adipose tissue: structural and functional differences. Obesity Reviews. 2010;11(1):11-8.
Spiegelman BM, Enerback S. The adipocyte: a multifunctional cell. Cell Metab. 2006;4(6):425-7.
Proenca AR, Sertie RA, Oliveira AC, Campana AB, Caminhotto RO, Chimin P, et al. New concepts in white adipose tissue physiology. Brazilian Journal of Medical and Biological Research = Revista Brasileira de Pesquisas Medicas e Biologicas/Sociedade Brasileira de Biofisica. 2014;47(3):192-205.
Beltran-Sanchez H, Harhay MO, Harhay MM, McElligott S. Prevalence and trends of metabolic syndrome in the adult U.S. population, 1999-2010. Journal of the American College of Cardiology. 2013;62(8):697-703.
van Vliet-Ostaptchouk JV, Nuotio ML, Slagter SN, Doiron D, Fischer K, Foco L, et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocrine Disorders. 2014;14:9.
Fain JN. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm. 2006;74:443-77.
Frontini A, Cinti S. Distribution and development of brown adipocytes in the murine and human adipose organ. Cell Metabolism. 2010;11(4):253-6.
Smitka K, Maresova D. Adipose Tissue as an Endocrine Organ: An Update on Pro-inflammatory and Anti-inflammatory Microenvironment. Prague Medical Report. 2015;116(2):87-111.
Cianflone K, Xia Z, Chen LY. Critical review of acylation-stimulating protein physiology in humans and rodents. Biochim Biophys Acta. 2003;1609(2):127-43.
Napolitano A, Lowell BB, Damm D, Leibel RL, Ravussin E, Jimerson DC, et al. Concentrations of adipsin in blood and rates of adipsin secretion by adipose tissue in humans with normal, elevated and diminished adipose tissue mass. Int J Obes Relat Metab Disord. 1994;18(4):213-8.
Bo S, Ciccone G, Baldi I, Gambino R, Mandrile C, Durazzo M, et al. Plasma visfatin concentrations after a lifestyle intervention were directly associated with inflammatory markers. Nutr Metab Cardiovasc Dis. 2009;19(6):423-30.
Kadoglou NP, Sailer N, Moumtzouoglou A, Kapelouzou A, Tsanikidis H, Vitta I, et al. Visfatin (nampt) and ghrelin as novel markers of carotid atherosclerosis in patients with type 2 diabetes. Experimental and Clinical Endocrinology & Diabetes: Official Journal, German Society of Endocrinology and German Diabetes Association. 2010;118(2):75-80.
de Luis DA, Aller R, Izaola O, Sagrado MG, Conde R. Modulation of adipocytokines response and weight loss secondary to a hypocaloric diet in obese patients by -55CT polymorphism of UCP3 gene. Horm Metab Res. 2008;40(3):214-8.
Fukuhara A, Matsuda M, Nishizawa M, Segawa K, Tanaka M, Kishimoto K, et al. Visfatin: a protein secreted by visceral fat that mimics the effects of insulin. Science. 2005;307(5708):426-30.
Yamawaki H, Hara N, Okada M, Hara Y. Visfatin causes endothelium-dependent relaxation in isolated blood vessels. Biochemical and Biophysical Research Communications. 2009;383(4):503-8.
Adya R, Tan BK, Chen J, Randeva HS. Pre-B cell colony enhancing factor (PBEF)/visfatin induces secretion of MCP-1 in human endothelial cells: role in visfatin-induced angiogenesis. Atherosclerosis. 2009;205(1):113-9.
Pan HY, Guo L, Li Q. Changes of serum omentin-1 levels in normal subjects and in patients with impaired glucose regulation and with newly diagnosed and untreated type 2 diabetes. Diabetes Res Clin Pract. 2010;88(1):29-33.
Yamawaki H, Kuramoto J, Kameshima S, Usui T, Okada M, Hara Y. Omentin, a novel adipocytokine inhibits TNF-induced vascular inflammation in human endothelial cells. Biochemical and Biophysical Research Communications. 2011;408(2):339-43.
de Souza Batista CM, Yang RZ, Lee MJ, Glynn NM, Yu DZ, Pray J, et al. Omentin plasma levels and gene expression are decreased in obesity. Diabetes. 2007;56(6):1655-61.
Matsuo K, Shibata R, Ohashi K, Kambara T, Uemura Y, Hiramatsu-Ito M, et al. Omentin functions to attenuate cardiac hypertrophic response. J Mol Cell Cardiol. 2014;79C:195-202.
Cinti S. Between brown and white: novel aspects of adipocyte differentiation. Ann Med. 2011;43(2):104-15.
Rosenwald M, Wolfrum C. The origin and definition of brite versus white and classical brown adipocytes. Adipocyte. 2014;3(1):4-9.
Esteve Ràfols M. Tejido adiposo: heterogeneidad celular y diversidad funcional. Endocrinología y Nutrición. 2014;61(2):100-12.
Blondin DP, Tingelstad HC, Mantha OL, Gosselin C, Haman F. Maintaining thermogenesis in cold exposed humans: relying on multiple metabolic pathways. Compr Physiol. 2014;4(4):1383-402.
Sanchez-Gurmaches J, Guertin DA. Adipocyte lineages: tracing back the origins of fat. Biochim Biophys Acta. 2014;1842(3):340-51.
Chechi K, Carpentier AC, Richard D. Understanding the brown adipocyte as a contributor to energy homeostasis. Trends Endocrinol Metab. 2013;24(8):408-20.
Lidell ME, Enerback S. Brown adipose tissue-a new role in humans? Nat Rev Endocrinol. 2010;6(6):319-25.
Ouellet V, Routhier-Labadie A, Bellemare W, Lakhal-Chaieb L, Turcotte E, Carpentier AC, et al. Outdoor temperature, age, sex, body mass index, and diabetic status determine the prevalence, mass, and glucose-uptake activity of 18F-FDGdetected BAT in humans. The Journal of Clinical Endocrinology and Metabolism. 2011;96(1):192-9.
van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, et al. Cold-activated brown adipose tissue in healthy men. New England Journal of Medicine. 2009;360(15):1500-8.
Cannon B, Nedergaard J. Metabolic consequences of the presence or absence of the thermogenic capacity of brown adipose tissue in mice (and probably in humans). Int J Obes (Lond). 2010;34(suppl 1):S7-16.
Martinez de Mena R, Scanlan TS, Obregon MJ. The T3 receptor beta1 isoform regulates UCP1 and D2 deiodinase in rat brown adipocytes. Endocrinology. 2010;151(10):5074-83.
Fisher FM, Estall JL, Adams AC, Antonellis PJ, Bina HA, Flier JS, et al. Integrated regulation of hepatic metabolism by fibroblast growth factor 21 (FGF21) in vivo. Endocrinology. 2011;152(8):2996-3004.
Harms MJ, Ishibashi J, Wang W, Lim HW, Goyama S, Sato T, et al. Prdm16 is required for the maintenance of brown adipocyte identity and function in adult mice. Cell Metabolism. 2014;19(4):593-604.
Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol. 2010;316(2):129-39.
Qiao L, Yoo H, Bosco C, Lee B, Feng GS, Schaack J, et al. Adiponectin reduces thermogenesis by inhibiting brown adipose tissue activation in mice. Diabetologia. 2014;57(5):1027-36.
Townsend K, Tseng YH. Brown adipose tissue: Recent insights into development, metabolic function and therapeutic potential. Adipocyte. 2012;1(1):13-24.
Tomlinson E, Fu L, John L, Hultgren B, Huang X, Renz M, et al. Transgenic mice expressing human fibroblast growth factor-19 display increased metabolic rate and decreased adiposity. Endocrinology. 2002;143(5):1741-7.
Konishi M. Fibroblast Growth Factor-16 is a Growth Factor for Embryonic Brown Adipocytes. Journal of Biological Chemistry. 2000;275(16):12119-22.
Hondares E, Iglesias R, Giralt A, Gonzalez FJ, Giralt M, Mampel T, et al. Thermogenic activation induces FGF21 expression and release in brown adipose tissue. The Journal of Biological Chemistry. 2011;286(15):12983-90.
Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE, Papavassiliou AG. Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med. 2011;17(7-8):736-40.
Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26(3):271-81.
Wu J, Bostrom P, Sparks LM, Ye L, Choi JH, Giang AH, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366-76.
Giralt M, Villarroya F. White, brown, beige/brite: different adipose cells for different functions? Endocrinology. 2013;154(9):2992-3000.
Park A, Kim WK, Bae KH. Distinction of white, beige and brown adipocytes derived from mesenchymal stem cells. World J Stem Cells. 2014;6(1):33-42.
Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J. Chronic peroxisome proliferator-activated receptor gamma (PPARgamma) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. The Journal of Biological Chemistry. 2010;285(10):7153-64.
Kajimura S, Spiegelman BM, Seale P. Brown and Beige Fat: Physiological Roles beyond Heat Generation. Cell Metabolism. 2015;22(4):546-59.
Pisani DF, Djedaini M, Beranger GE, Elabd C, Scheideler M, Ailhaud G, et al. Differentiation of Human Adipose-Derived Stem Cells into "Brite" (Brown-in-White) Adipocytes. Frontiers in Endocrinology. 2011;2:87.
Lee P, Werner CD, Kebebew E, Celi FS. Functional thermogenic beige adipogenesis is inducible in human neck fat. Int J Obes (Lond). 2014;38(2):170-6.
Hansen IR, Jansson KM, Cannon B, Nedergaard J. Contrasting effects of cold acclimation versus obesogenic diets on chemerin gene expression in brown and brite adipose tissues. Biochimica et Biophysica Acta (BBA)-Molecular and Cell Biology of Lipids. 2014;1841(12):1691-9.
Giordano A, Smorlesi A, Frontini A, Barbatelli G, Cinti S. White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol. 2014;170(5):R159-71.
Morroni M, Giordano A, Zingaretti MC, Boiani R, De Matteis R, Kahn BB, et al. Reversible transdifferentiation of secretory epithelial cells into adipocytes in the mammary gland. Proc Natl Acad Sci USA. 2004;101(48):16801-6.
Kadam L, Kohan-Ghadr HR, Drewlo S. The balancing act-PPAR-gamma’s roles at the maternal-fetal interface. Syst Biol Reprod Med. 2014:1-7.
Rudolph MC, McManaman JL, Phang T, Russell T, Kominsky DJ, Serkova NJ, et al. Metabolic regulation in the lactating mammary gland: a lipid synthesizing machine. Physiological Genomics. 2007;28(3):323-36.
Wang YY, Wang YL, Li HP, Zhu HS, Jiang QD, Zhang L, et al. Leptin mRNA expression in the rat mammary gland at different activation stages. Genetics and Molecular Research: GMR. 2011;10(4):3657-63.
Palou A, Sanchez J, Pico C. Nutrient-gene interactions in early life programming: leptin in breast milk prevents obesity later on in life. Adv Exp Med Biol. 2009;646:95-104.
Gonçalves CA, Leite MC, Guerra MC. Adipocytes as an important source of serum S100B and possible roles of this protein in adipose tissue. Cardiovascular Psychiatry and Neurology. 2010;(2010):790431.
Russell TD, Palmer CA, Orlicky DJ, Fischer A, Rudolph MC, Neville MC, et al. Cytoplasmic lipid droplet accumulation in developing mammary epithelial cells: roles of adipophilin and lipid metabolism. Journal of Lipid Research. 2007;48(7):1463-75.
Wang Y, Sullivan S, Trujillo M, Lee MJ, Schneider SH, Brolin RE, et al. Perilipin expression in human adipose tissues: effects of severe obesity, gender, and depot. Obesity Research. 2003;11(8):930-6.
Brasaemle D, Barber T, Wolins N, Serrero G, Blanchette-Mackie E, Londos C. Adipose differentiation-related protein is an ubiquitously expressed lipid storage droplet-associated protein. Journal of Lipid Research. 1997;38(11):2249-63.
Friedman SL. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiological Reviews. 2008;88(1):125-72.
Weiskirchen R, Tacke F. Cellular and molecular functions of hepatic stellate cells in inflammatory responses and liver immunology. Hepatobiliary Surgery and Nutrition. 2014;3(6):344-63.
Mederacke I, Hsu CC, Troeger JS, Huebener P, Mu X, Dapito DH, et al. Fate tracing reveals hepatic stellate cells as dominant contributors to liver fibrosis independent of its aetiology. Nature Communications. 2013;4:2823.
Carpino G, Renzi A, Onori P, Gaudio E. Role of hepatic progenitor cells in nonalcoholic fatty liver disease development: cellular cross-talks and molecular networks. Int J Mol Sci. 2013;14(10):20112-30.
Zhai X, Yan K, Fan J, Niu M, Zhou Q, Zhou Y, et al. The beta-catenin pathway contributes to the effects of leptin on SREBP-1c expression in rat hepatic stellate cells and liver fibrosis. Br J Pharmacol. 2013;169(1):197-212.
Tang Y, Chen A. Curcumin eliminates the effect of advanced glycation endproducts (AGEs) on the divergent regulation of gene expression of receptors of AGEs by interrupting leptin signaling. Laboratory Investigation; a Journal of Technical Methods and Pathology. 2014;94(5):503-16.
Edwards CR, Hindle AK, Latham PS, Fu SW, Brody FJ. Resistin expression correlates with steatohepatitis in morbidly obese patients. Surgical Endoscopy. 2013;27(4):1310-4.
Shen C, Zhao CY, Wang W, Wang YD, Sun H, Cao W, et al. The relationship between hepatic resistin overexpression and inflammation in patients with nonalcoholic steatohepatitis. BMC Gastroenterol. 2014;14:39.
Dong ZX, Su L, Brymora J, Bird C, Xie Q, George J, et al. Resistin mediates the hepatic stellate cell phenotype. World Journal of Gastroenterology: WJG. 2013;19(28):4475-85.
Ding X, Saxena NK, Lin S, Xu A, Srinivasan S, Anania FA. The roles of leptin and adiponectin: a novel paradigm in adipocytokine regulation of liver fibrosis and stellate cell biology. The American Journal of Pathology. 2005;166(6):1655-69.
Kumar P, Smith T, Rahman K, Thorn NE, Anania FA. Adiponectin agonist ADP355 attenuates CCl4-induced liver fibrosis in mice. PLoS One. 2014;9(10):e110405.
Ramezani-Moghadam M, Wang J, Ho V, Iseli TJ, Alzahrani B, Xu A, et al. Adiponectin Reduces Hepatic Stellate Cell Migration by Promoting Tissue Inhibitor of Metalloproteinase-1 (TIMP-1) Secretion. The Journal of Biological Chemistry. 2015;290(9):5533-42.
Handy JA, Fu PP, Kumar P, Mells JE, Sharma S, Saxena NK, et al. Adiponectin inhibits leptin signalling via multiple mechanisms to exert protective effects against hepatic fibrosis. The Biochemical Journal. 2011;440(3):385-95.
Krautbauer S, Wanninger J, Eisinger K, Hader Y, Beck M, Kopp A, et al. Chemerin is highly expressed in hepatocytes and is induced in non-alcoholic steatohepatitis liver. Exp Mol Pathol. 2013;95(2):199-205.
Osawa Y, Hoshi M, Yasuda I, Saibara T, Moriwaki H, Kozawa O. Tumor necrosis factor-alpha promotes cholestasis-induced liver fibrosis in the mouse through tissue inhibitor of metalloproteinase-1 production in hepatic stellate cells. PLoS One. 2013;8(6):e65251.
Liang NL, Men R, Zhu Y, Yuan C, Wei Y, Liu X, et al. Visfatin: An adipokine activator of rat hepatic stellate cells. Molecular Medicine Reports. 2015;11(2):1073-8.
Cinti S. White, brown, and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol. 2014;170(5):R159-71.