2015, Número 2
<< Anterior Siguiente >>
Rev Cubana Farm 2015; 49 (2)
Ciclótidos, proteínas circulares producidas por plantas con potencial farmacológico
Contreras PE, Díaz CA, Taron DA
Idioma: Español
Referencias bibliográficas: 21
Paginas: 384-393
Archivo PDF: 114.53 Kb.
RESUMEN
Los ciclótidos son proteínas circulares de alrededor de 28 a 37 residuos de aminoácidos, poseen una marcada importancia biológica gracias a su estructura cíclica que le proporciona estabilidad. En este estudio se realizó una búsqueda bibliográfica en las bases de datos
EBSCOHOST, Science Direct, Pubmed y ACS
publication. Los artículos seleccionados entre los años 2010 a 2014 contenían las palabras claves
cyclotides, cyclic peptides, macrocyclic peptides y
drugs, se seleccionaron teniendo en cuenta como criterios de inclusión artículos con texto completo en ingles, de investigaciones experimentales originales, relacionadas con el uso de ciclótidos para el diseño de fármacos. Mediante el análisis de los artículos
se encontró que los ciclótidos tienen un amplio rango de bioactividades tales como insecticida, uterotónica, antimicrobiana, antiVIH, anticáncer, hemolítica,
antagonista de la neurotensina e inhibidora de la tripsina por lo cual se pueden emplear como bases para la elaboración de nuevos fármacos que puedan ser aplicados al tratamiento de distintas enfermedades.
REFERENCIAS (EN ESTE ARTÍCULO)
Park S, Stromstedt AA, Goransson U. Cyclotide structure-activity relationships: qualitative and quantitative approaches linking cytotoxic and anthelmintic activity to the clustering of physicochemical forces. PloS one. 2014;9(3):e91430.
Hashempour H, Koehbach J, Daly NL, Ghassempour A, Gruber CW. Characterizing circular peptides in mixtures: sequence fragment assembly of cyclotides from a violet plant by MALDI-TOF/TOF mass spectrometry. Amino acids. 2013;44(2):581-95.
Wang CK, Clark RJ, Harvey PJ, Rosengren KJ, Cemazar M, Craik DJ. The role of conserved Glu residue on cyclotide stability and activity: a structural and functional study of kalata B12, a naturally occurring Glu to Asp mutant. Biochemistry. 2011;50(19):4077-86.
Garcia AE, Camarero JA. Biological activities of natural and engineered cyclotides, a novel molecular scaffold for peptide-based therapeutics. Current molecular pharmacology. 2010;3(3):153-63.
Poth AG, Colgrave ML, Philip R, Kerenga B, Daly NL, Anderson MA, et al. Discovery of cyclotides in the fabaceae plant family provides new insights into the cyclization, evolution, and distribution of circular proteins. ACS chemical biology. 2011;6(4):345-55.
Craik DJ, Conibear AC. The chemistry of cyclotides. The Journal of organic chemistry. 2011;76(12):4805-17.
Ireland DC, Clark RJ, Daly NL, Craik DJ. Isolation, sequencing, and structure-activity relationships of cyclotides. Journal of natural products. 2010;73(9):1610-22.
Gran L. Oxytocic principles of Oldenlandia affinis. Lloydia. 1973;36(2):174-8. Epub 1973/06/01.
Goransson U, Burman R, Gunasekera S, Stromstedt AA, Rosengren KJ. Circular proteins from plants and fungi. The Journal of biological chemistry. 2012;287(32):27001-6.
Burman R, Gruber CW, Rizzardi K, Herrmann A, Craik DJ, Gupta MP, et al. Cyclotide proteins and precursors from the genus Gloeospermum: filling a blank spot in the cyclotide map of Violaceae. Phytochemistry. 2010;71(1):13-20.
Henriques ST, Huang YH, Rosengren KJ, Franquelim HG, Carvalho FA, Johnson A, et al. Decoding the membrane activity of the cyclotide kalata B1: the importance of phosphatidylethanolamine phospholipids and lipid organization on hemolytic and anti-HIV activities. The Journal of biological chemistry. 2011;286(27):24231-41.
Pranting M, Loov C, Burman R, Goransson U, Andersson DI. The cyclotide cycloviolacin O2 from Viola odorata has potent bactericidal activity against Gramnegative bacteria. The Journal of antimicrobial chemotherapy. 2010;65(9):1964-71.
Sando L, Henriques ST, Foley F, Simonsen SM, Daly NL, Hall KN, et al. A Synthetic mirror image of kalata B1 reveals that cyclotide activity is independent of a protein receptor. Chembiochem. 2011;12(16):2456-62.
Tang J, Wang CK, Pan X, Yan H, Zeng G, Xu W, et al. Isolation and characterization of cytotoxic cyclotides from Viola tricolor. Peptides. 2010;31(8):1434-40.
Gerlach SL, Burman R, Bohlin L, Mondal D, Goransson U. Isolation, characterization, and bioactivity of cyclotides from the Micronesian plant Psychotria leptothyrsa. Journal of natural products. 2010;73(7):1207-13.
Yeshak MY, Burman R, Asres K, Goransson U. Cyclotides from an extreme habitat: characterization of cyclic peptides from Viola abyssinica of the Ethiopian highlands. Journal of natural products. 2011;74(4):727-31.
Craik DJ, Mylne JS, Daly NL. Cyclotides: macrocyclic peptides with applications in drug design and agriculture. Cellular and molecular life sciences. CMLS. 2010;67(1):9-16.
Craik DJ. Host-defense activities of cyclotides. Toxins. 2012;4(2):139-56.
Nawae W, Hannongbua S, Ruengjitchatchawalya M. Defining the membrane disruption mechanism of kalata B1 via coarse-grained molecular dynamics simulations. Scientific reports. 2014;4:3933.
Tam JP, Lu YA, Yang JL, Chiu KW. An unusual structural motif of antimicrobial peptides containing end-to-end macrocycle and cystine-knot disulfides. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(16):8913-8.
Craik DJ. Plant cyclotides: circular, knotted peptide toxins. Toxicon. 2001;39(12):1809-13.