2014, Número 2
Siguiente >>
Rev Cub Gen 2014; 8 (2)
Los Defectos Congénitos de la etapa I de la N-Glicosilación. Bases moleculares y manifestaciones clínicas
Acosta ST, Bermejo VAJ, Archer JJ
Idioma: Español
Referencias bibliográficas: 57
Paginas: 4-14
Archivo PDF: 446.92 Kb.
RESUMEN
Los defectos congénitos de la glicosilación son un grupo de rápida expansión que presentan una amplia sintomatología y variado grado de severidad. La causa molecular se relaciona con la deficiencia en el proceso de N-glicosilación. Este proceso tiene lugar tanto en el retículo endoplasmático como en el aparato de Golgi y ocurre mediante dos etapas. Hasta la fecha, se han descrito más de 30 tipos de trastornos genéticos de la N glicosilación. CDG-Ia es el más frecuente de todos. Los principales hallazgos clínicos resultan: el retraso psicomotor, ataxia, convulsiones, retinopatía, fibrosis hepática, coagulopatías, fallo de medro, rasgos dismórficos que incluyen las pezones invertidos y la distribución anómala de grasa subcutánea. Solo existe tratamiento efectivo demostrado para el CDG-Ib. Se realiza una actualización de los CDG que involucran afectación de la primera etapa de este proceso.
REFERENCIAS (EN ESTE ARTÍCULO)
Freeze HH, Aebi M. Altered glycan structures: the molecular basis of congenital disorders of glycosylation. Curr Opin Struct Biol. 2005; 15: 490–8.
Stanley P, Schachter H, Taniguchi N, Glycans N, In: Varki A, Cummings R.D, et al. Essentials of Glycobiology. Second Edition. Cold Spring Harbor Laboratory Press; Cold Spring Harbor: 2009. pp. 101–14.
Orphanet Report Series - Prevalence of rare diseases: Bibliographic data - May 2014Number.2. Disponible en: http://www. orpha.net/orphacom/cahiers/docs/GB/Prevalence of rare diseases by decreasing prevalence or cases.pdf.
Freeze HH. Genetic defects in the human glycome. Nat Rev Genet. 2006; 7: 537-51.
Freeze H, Chong J, Bamshad M, Ng B. Solving Glycosylation Disorders: Fundamental approaches Reveal Complicated Pathways. Am J Hum Genet. 2014; 94(2): 161–75.
Jaak Jaeken. Congenital disorders of glycosylation (CDG): it’s (nearly) all in it!. J Inherit Metab Dis. 2011; 34:853–8
Hennet T. Diseases of glycosylation beyond classical congenital disorders of glycosylation. Biochim Biophys Acta. 2012 ;1820(9):1306-17
Supraha S, Dabelic S, Dumic J. Insights into complexity of congenital disorders of glycosylation. Biochemia Medica. 2012;22(2):156-70.
Cylwik B, Naklicki M, Chrostek L, Gruszewska E. Congenital disorders of glycosylation. Part I. Defects of protein Nglycosylation. Acta biochimica polonica. 2013; 60(2):151-61
Eklund EA, Freeze H. The Congenital Disorders of Glycosylation: A Multifaceted Group of Syndromes. The American Society for Experimental NeuroTherapeutics. 2006,3: 163-254
Vodopiutz J, Bodamer A. Congenital disorders of glycosylation—a challenging group of IEMs. J Inherit Metab Dis. 2008; 31:267–9
Jaeken J. Congenital disorders of glycosylation. Ann NY Acad Sci. 2010;1214: 190–8.
Rymen D, Jaeken J. Skin manifestations in CDG. J Inherit Metab Dis. 2014;37:699–708
Dipak K, Banerjee. N-glycans in cell survival and death: Cross-talk between Glycosyltransferases. Biochim Biophys Acta. 2012 ;1820(9): 1338–46.
Jaeken J, Vanderschueren-Lodewyckx M, Snoeck L, Corbeel L, Wggermont E, Eeckels R. Familiar psychomotor retardation with markedly fluctuating serum prolactin, FSH and GH levels, partial TBG deficiency, increased serum Arylsulphatase A and increased CSF protein: a new syndrome? Pediar Res. 1980; 14: 179.
Jaeken J, van Eijk HG, van der Heul C, et al. Sialic acid deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin Chim Acta. 1984;144: 245–7.
Scott K1 , Gadomski T, Kozicz T, Morava E. Congenital disorders of glycosylation: new defects and still counting. J Inherit Metab Dis. 2014 Jul;37(4):609-17
Theodore M, Morava E. Congenital disorders of glycosylation: sweet news. Cur Opin Pediatr 2011; 23: 581–87.
Morava E, Lefeber D. CDG – an update. J Inherit Metab Dis 2011;34:847–8
Freeze H.H. Understanding human glycosylation disorders: biochemistry leads the charge. J. Biol. Chem. 2013;288: 6936–45.
Schwarz F, Aebi M. Mechanisms and principles of N-linked protein glycosylation. Curr Opin Struct Biol 2011;21: 576-82.
Larkin A, Imperiali B. The expanding horizons of asparagine-linked glycosylation. Biochemistry 2011;50: 4411-26.
Mohorko E, Glockshuber R, Aebi. M. Oligosaccharyltransferase: the central enzyme of N-linked protein glycosylation. J Inherit Metab Dis. 2011; 34:869–78
Aebi M, Helenius A, Schenk B, et al. Carbohydrate deficient glycoprotein syndromes become congenital disorders of glycosylation: an updated nomenclature for CDG. First International Workshop on CDGS. Glycoconj J. 1999;16: 669–71
Jaeken J, Hennet T, Freeze H, Matthijs G. On the nomenclature of congenital disorders of glycosylation (CDG). J Inherit Metab Dis. 2008;31: 669–72
Jaeken J, Hennet T, Matthijs G, Freeze HH. CDG nomenclature: time for a change! Biochim Biophys Acta 2009;1792: 825-6.
Martínez-Duncker I, Asteggiano C, Freeze H. Congenital Disorders of Glycosylation.In: Hector Manuel Mora-Montes editors. Glycans: Biochemistry, characterization and Applications. Nova Science Publishers. 2012. Pp59-81
Online Mendelian Inheritance in Man, OMIM®. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, MD), [2014]. Disponible en: www: http://omim.org/.
Orphanet Report Series- List of rare diseases and synonyms listed in alphabetical number – July2014. Disponible en: http:// www.orpha.net/orphacom/cahiers/docs/GB/List of rare diseases in alphabetical order.pdf.
He P1, Srikrishna G, Freeze HH. N-glycosylation deficiency reduces ICAM-1 induction and impairs inflammatory response. Glycobiology. 2014;24(4):392-8.
Casado M, O’Callaghan MM, Montero R, Pérez-Cerda C, Pérez B, Briones P, Quintana E, et al. Mild clinical and biochemical phenotype in two patients with PMM2-CDG (congenital disorder of glycosylation Ia). Cerebellum. 2012 Jun;11(2):557- 63.
Van Geet C, Jaeken J, Freson K, Lenaerts T, Arnout J, Vermylen J, Hoylaerts M. F. Congenital disorders of glycosylation type Ia and IIa are associated with different primary haemostatic complications. J. Inherit. Metab. Dis. 2001;24: 477-92.
Pelletier V A, Galeano N, Brochu P, Morin C L, Weber A. M, Roy, C C. Secretory diarrhea with protein-losing enteropathy, enterocolitis cystica superficialis, intestinal lymphangiectasia, and congenital hepatic fibrosis: a new syndrome. J. Pediat. 1986;108: 61-5.
Marquardt T, Denecke J. Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Europ. J. Pediat. 2003;162: 359-79.
Burda P, Borsig L, de Rijk-Andel J, Wevers R, Jaeken J, Carchon H, et al. Novel carbohydrate-deficient glycoprotein syndrome characterized by a deficiency in glucosylation of the dolichol-linked oligosaccharide. J. Clin. Invest. 1998;102: 647-52.
Korner C, Knauer R, Holzbach U, Hanefeld F, Lehle L, von Figura K. Carbohydrate-deficient glycoprotein syndrome type V: deficiency of dolichyl-P-Glc:Man(9)GlcNAc(2)-PP-dolichyl glucosyltransferase. Proc. Nat. Acad. Sci. 1998;95: 13200-5.
Stibler H, Stephani U, Kutsch U. Carbohydrate-deficient glycoprotein syndrome: a fourth type. Neuropediatrics. 1995;26: 235-7.
Chantret I, Dupre T, Delenda C, Bucher S, Dancourt J, Barnier A, et al. Congenital disorders of glycosylation type Ig is defined by a deficiency in dolichyl-P-mannose:Man-7-GlcNAc2-PP-dolichyl mannosyltransferase. J. Biol. Chem. 2002;277: 25815-22.
Chantret I, Dancourt J, Dupre T, Delenda C, Bucher S, Vuillaumier-Barrot S, et al. S. E. H. A deficiency in dolichyl-Pglucose: Glc-1-Man-9-GlcNAc2-PP-dolichyl alpha-3-glucosyltransferase defines a new subtype of congenital disorders of glycosylation. J. Biol. Chem. 2003; 278: 9962-71.
Thiel C, Schwarz M, Peng J, Grzmil M, Hasilik M, Braulke T, Kohlschutter A, et al. New type of congenital disorders of glycosylation (CDG-Ii) provides new insights into the early steps of dolichol-linked oligosaccharide biosynthesis. J. Biol. Chem. 2003;278: 22498-505.
Wu X, Rush J S, Karaoglu D, Krasnewich D, Lubinsky MS, Waechter CJ, et al. Deficiency of UDP-GlcNAc:dolichol phosphate N-acetylglucosamine-1 phosphate transferase (DPAGT1) causes a novel congenital disorder of glycosylation type Ij. Hum. Mutat.2003;22: 144-50.
Wurde A E, Reunert J, Rust S, Hertzberg C, Haverkamper S, Nurnberg G, et al. Congenital disorder of glycosylation type Ij (CDG-Ij, DPAGT1-CDG): extending the clinical and molecular spectrum of a rare disease. Molec. Genet. Metab. 2012;105: 634-41.
Schwarz M, Thiel C, Lubbehusen J, Dorland B, de Koning T, von Figura K, et al. Deficiency of GDP-Man:GlcNAc2-PPdolichol mannosyltransferase causes congenital disorder of glycosylation type Ik. Am. J. Hum. Genet.2004;74: 472-81.
Frank CG, Grubenmann CE, Eyaid W, Berger EG, Aebi M, Hennet T. Identification and functional analysis of a defect in the human ALG9 gene: definition of congenital disorder of glycosylation type IL. Am. J. Hum. Genet. 2004;75: 146-50.
Weinstein M, Schollen E, Matthijs G, Neupert C, Hennet T, Grubenmann CE, Frank CG, et al. CDG-IL: an infant with a novel mutation in the ALG9 gene and additional phenotypic features. Am. J. Med. Genet. 2005;136A: 194-7.
Haeuptle MA, Pujol FM, Neupert C, Winchester B, Kastaniotis AJ, Aebi M, Hennet T. Human RFT1 deficiency leads to a disorder of N-linked glycosylation. Am. J. Hum. Genet. 2008,82: 600-6
Rind N, Schmeiser V, Thiel C, Absmanner B, Lubbehusen J, Hocks J. Apeshiotis N, severe human metabolic disease caused by deficiency of the endoplasmatic mannosyltransferase hALG11 leads to congenital disorder of glycosylation-Ip. Hum. Molec. Genet. 2010;19: 1413-24.
Thiel C, Rind N, Popovici D, Hoffmann G F, Hanson K, Conway R L, et al. Improved diagnostics lead to identification of three new patients with congenital disorder of glycosylation-Ip. Hum. Mutat. 2012,33: 485-7.
Jones M A, Ng B G, Bhide S, Chin E, Rhodenizer D, He P, et al. DDOST mutations identified by whole-exome sequencing are implicated in congenital disorders of glycosylation. Am. J. Hum. Genet. 2012;90: 363-8.
Timal S, Hoischen A, Lehle L, Adamowicz M, Huijben K, Sykut-Cegielska J, et al. Gene identification in the congenital disorders of glycosylation type I by whole-exome sequencing. Hum. Molec. Genet. 2012;21: 4151-61
Shrimal S, Ng BG, Losfeld M-E, Gilmore R, Freeze H H. Mutations in STT3A and STT3B cause two congenital disorders of glycosylation. Hum. Molec. Genet. 2013;22: 4638-45.
Molinari F, Foulquier F, Tarpey P S, Morelle W, Boissel S, Teague J, et al. Oligosaccharyltransferase-subunit mutations in nonsyndromic mental retardation. Am. J. Hum. Genet. 2008;82: 1150-7.
Garshasbi M, Hadavi V, Habibi H, Kahrizi K, Kariminejad R, Behjati F,et al. A defect in the TUSC3 gene is associated with autosomal recessive mental retardation. Am. J. Hum. Genet.2008;82: 1158-64.
Garshasbi M, Kahrizi K, Hosseini M, Nouri Vahid L, Falah M, Hemmati S, et al. A novel nonsense mutation in TUSC3 is responsible for non-syndromic autosomal recessive mental retardation in a consanguineous Iranian family. Am. J. Med Genet. 2011; 155A: 1976-1980.
Li F-Y, Chaigne-Delalande B, Kanellopoulou C, Davis JC, Matthews H F, Douek D C, et al. Second messenger role for Mg (2+) revealed by human T-cell immunodeficiency. Nature. 2011; 475: 471-476.
Cossins J, Belaya K, Hicks D, Salih M A, Finlayson S, Carboni N, et al. Congenital myasthenic syndromes due to mutations in ALG2 and ALG14. Brain. 2013; 136: 944-956.
Losfeld ME, Ng BG, Kircher M, Buckingham KJ, Turner EH, Eroshkin A, et al. University of Washington Center for Mendelian Genomics, Freeze HH. A new congenital disorder of glycosylation caused by a mutation in SSR4, the signal sequence receptor 4 protein of the TRAP complex. Hum Mol Genet. 2013. [Epub ahead of print] PubMed PMID: 24218363.