2015, Número 3
Siguiente >>
Biotecnol Apl 2015; 32 (3)
Biotransformación de ésteres por esterasas interfaciales inmovilizadas a partir de la anémona marina Stichodactyla helianthus
del Monte-Martínez A, González-Bacerio J, Cutiño-Avila B, Ruiz R, Avila R, Ramos-Leal M, Nolasco H, Díaz J, Guisán JM
Idioma: Ingles.
Referencias bibliográficas: 70
Paginas: 3201-3210
Archivo PDF: 414.86 Kb.
RESUMEN
Se obtuvo un biocatalizador inmovilizado (ShIE-Octyl), mediante la adsorción interfacial en el soporte Octyl-Sepharose CL 4B de todas las esterasas interfaciales del extracto acuoso de la anémona marina
Stichodactyla helianthus. El ShIE-Octyl sintetizado mediante este método simple contiene esterasas interfaciales semipurificadas, incluidas las isotoxinas StI y StII. Las esterasas inmovilizadas tienen estabilidad máxima a pH 7.0 para la hidrólisis de p-nitrofenil acetato (determinada espectrofotométricamente a 348 nm) durante 6 días, 90% de la actividad residual a 30ºC posteriormente, y conservan el 85 % de la actividad inicial en presencia de metanol o acetonitrilo 10%. La inmovilización no incrementa la estabilidad de las enzimas solubles frente al pH y sí frente a la temperatura y los solventes orgánicos. El biocatalizador hidroliza los ésteres farmacológicamente relevantes:
éster metílico del naproxeno, acetato de 2-oxiranilmetilo (OMAc), metil-prostaglandina A2 y 2-hidroxi-4-fenilbutirato de etilo (HPBEt), determinada mediante RP-HPLC o HPTLC, con 95-100 % de conversión en 6240 min, y
tolera solventes orgánicos al 20 %. La enantioselectividad frente a los dos primeros es inusual y particularmente relevante. Además, es selectivo por ésteres con estructuras ácidas complejas y alcohólicas simples, aunque hidroliza aquellos con sustituyentes alcohólicos aromáticos o heteroatómicos, como el butirato de feniletilo y el ácido 7-aminocefalosporánico. Es S-estéreoselectivo en la bioconversión de HPBEt y OMAc quirales, y R-estéreoselectivo en la hidrólisis del éster metílico del naproxeno en presencia de metanol o acetonitrilo 10 %. La selectividad por (S)-OMAc se favorece a baja temperatura (4°C) y fuerza iónica del tampón fosfato de sodio (10 mM).
REFERENCIAS (EN ESTE ARTÍCULO)
Reis P, Holmberg K, Watzke H, Leser ME, Miller R. Lipases at interfaces: a review. Adv Colloid Interface Sci. 2009;147- 148:237-50.
Goujard L, Villeneuve P, Barea B, Lecomte J, Pina M, Claude S, et al. A spectrophotometric transesterification-based assay for lipases in organic solvent. Anal Biochem. 2009;385(1):161-7.
Ma J, Wu L, Guo F, Gu J, Tang X, Jiang L, et al. Enhanced enantioselectivity of a carboxyl esterase from Rhodobacter sphaeroides by directed evolution. Appl Microbiol Biotechnol. 2013;97(11):4897-906.
Zarevucka M, Wimmer Z. Plant products for pharmacology: application of enzymes in their transformations. Int J Mol Sci. 2008;9(12):2447-73.
Gottemukkala VV, Saripella KK, Kadari AK, Neau SH. Effect of methyl branching of C8H18 alkanes and water activity on lipase catalyzed enantioselective esterification of ibuprofen. Electron J Biotechnol. 2008;11:1-12.
Hernández-Fernández FJ, de los Ríos AP, Tomás-Alonso F, Gómez D, Víllora G. Kinetic resolution of 1-phenylethanol integrated with separation of substrates and products by a supported ionic liquid membrane. J Chem Technol Biotechnol. 2009;84(3):337-42.
Sarasua JR, López N, López A, Meaurio E. Stereoselective crystallization and specific interactions in polylactides. Macromolecules. 2005;38(20):8362-71.
Wan X, Meng Q, Zhang H, Sun Y, Fan W, Zhang Z. An efficient synthesis of chiral beta-hydroxy sulfones via ru-catalyzed enantioselective hydrogenation in the presence of iodine. Org Lett. 2007;9(26) :5613-6.
Ali I, Kumerer K, Aboul-Enein HY. Mechanistic principles in chiral separations using liquid chromatography and capillary electrophoresis. Chromatographia. 2006;63(7):295-307.
Pregnolato M, Terreni M, de Fuentes IE, Alcántara AR, Sabuquillo P, FernándezLafuente R, et al. Enantioselective enzymatic hydrolysis of racemic glycidyl esters by using immobilized porcine pancreas lipase with improved catalytic properties. J Mol Catal B Enzymatic. 2001;11(4-6):757-63.
Brena B, González-Pombo P, BatistaViera F. Immobilization of enzymes: a literature survey. In: Guisán JM, editor. Immobilization of enzymes and cells. 3rd ed. New York: Springer Science+Business Media; 2013. p. 15-31.
Nunes de Lima L, Aragon CC, Mateo C, Palomo JM, Giordano RLC, Tardioli PW, et al. Immobilization and stabilization of a bimolecular aggregate of the lipase from Pseudomonas fluorescens by multipoint covalent attachment. Proc Biochem. 2013; 48(1):118-23.
Fernandez-Lafuente R, Armisen P, Sabuquillo P, Fernandez-Lorente G, Guisan JM. Immobilization of lipases by selective adsorption on hydrophobic supports. Chem Phys Lipids. 1998;93(1-2):185-97.
Barbosa O, Torres R, Ortiz C, Berenguer-Murcia A, Rodrigues RC, FernandezLafuente R. Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules. 2013;14(8):2433-62.
Kennedy J, Marchesi JR, Dobson AD. Marine metagenomics: strategies for the discovery of novel enzymes with biotechnological applications from marine environments. Microb Cell Fact. 2008;7:27.
Selvin J, Kennedy J, Lejon DP, Kiran GS, Dobson AD. Isolation identification and biochemical characterization of a novel halo-tolerant lipase from the metagenome of the marine sponge Haliclona simulans. Microb Cell Fact. 2012;11:72.
Pozzolini M, Scarfi S, Mussino F, Ferrando S, Gallus L, Giovine M. Molecular cloning, characterization, and expression analysis of a prolyl 4-hydroxylase from the marine sponge Chondrosia reniformis. Mar Biotechnol (NY). 2015;17(4):393-407.
Su J, Zhang F, Sun W, Karuppiah V, Zhang G, Li Z, et al. A new alkaline lipase obtained from the metagenome of marine sponge Ircinia sp. World J Microbiol Biotechnol. World J Microbiol Biotechnol. 2015;31(7):1093-102.
Debashish G, Malay S, Barindra S, Joydeep M. Marine enzymes. Adv Biochem Eng Biotechnol. 2005;96:189-218.
del Monte-Martínez A, GonzálezBacerio J, Aragón-Abreu C, PalomoCarmona JM, Guisán-Seijas JM, Díaz-Brito J. Selective and oriented immobilization of (phospho)lipases from the Caribbean Sea anemone Stichodactyla helianthus (Ellis, 1768) by interfacial adsorption. Rev CENIC Cienc Biol. 2012;43:3-8.
del Monte-Martinez A, GonzalezBacerio J, Romero L, Aragon C, Martinez D, Chávez M de los A, et al. Improved purification and enzymatic properties of a mixture of Sticholysin I and II: isotoxins with hemolytic and phospholipase A(2) activities from the sea anemone Stichodactyla helianthus. Protein Expr Purif. 2014;95:57-66.
Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227(5259) :680-5.
Baker JE, Fabrick JA, Zhu KY. Characterization of esterases in malathionresistant and susceptible strains of the pteromalid parasitoid Anisopteromalus calandrae. Insect Biochem Molec Biol. 1998;28(12):1039-50.
Jain DK, Jain N, Charde R, Jain N. The RPHPLC method for simultaneous estimation of esomeprazole and naproxen in binary combination. Pharm Methods. 2011;2(3) :167-72.
Patel TL, Patel BC, Kadam AA, Tipre DR, Dave SR. Application of novel consortium TSR for treatment of industrial dye manufacturing effluent with concurrent removal of ADMI, COD, heavy metals and toxicity. Water Sci Technol. 2015;71(9):1293-300.
del Monte A. Obtención de un nuevo material para ser utilizado como biocatalizador inmovilizado en Química Fina a partir de la anémona marina Stichodactyla helianthus [dissertation]. Havana: University of Havana; 2000.
Sabuquillo P, Reina J, FernandezLorente G, Guisan JM, Fernandez-Lafuente R. ‘Interfacial affinity chromatography’ of lipases: separation of different fractions by selective adsorption on supports activated with hydrophobic groups. Biochim Biophys Acta. 1998;1388(2):337-48.
Cunha AG, Fernandez-Lorente G, Gutarra ML, Bevilaqua JV, Almeida RV, Paiva LM, et al. Separation and immobilization of lipase from Penicillium simplicissimum by selective adsorption on hydrophobic supports. Appl Biochem Biotechnol. 2009;156(1-3):133-45.
Singh RK, Tiwari MK, Singh R, Lee JK. From protein engineering to immobilization: promising strategies for the upgrade of industrial enzymes. Int J Mol Sci. 2013; 14(1):1232-77.
Fang Y, Huang X-J, Chen P-C, Xu Z-K. Polymer materials for enzyme immobilization and their application in bioreactors. BMB Rep. 2011;44:87-95.
Masuda Y, Kugimiya S, Kato K. Improvement of thermal-stability of enzyme immobilized onto mesoporous zirconia. J As Ceram Soc. 2014;2(1):11-9.
Tutar H, Yilmaz E, Pehlivan E, Yilmaz M. Immobilization of Candida rugosa lipase on sporopollenin from Lycopodium clavatum. Int J Biol Macromol. 2009;45(3):315-20.
Yi SS, Noh JM, Lee YS. Amino acid modified chitosan beads: improved polymer supports for immobilization of lipase from Candida rugosa. J Mol Catal B: Enzym. 2009;57(1-4):123-9.
Deng HT, Wang JJ, Liu ZY, Ma M. Influence of varying surface hydrophobicity of chitosan membranes on the adsorption and activity of lipase. J Appl Polym Sci. 2010; 115(2):1168-75.
Orrego CE, Salgado N, Valencia JS, Giraldo GI, Giraldo OH, Cardona CA. Novel chitosan membranes as support for lipases immobilization: characterization aspects. Carbohydr Polym. 2010;79(1):9-16.
Uygun DA, Çorman ME, Öztürk N, Akgöl S, Denizli A. Poly(hydroxyethyl methacrylate-co-methacryloylamidotryptophane) nanospheres and their utilization as affinity adsorbents for porcine pancreas lipase adsorption. Mater Sci Eng C. 2010;30:1285-90.
Bolivar JM, Eisl I, Nidetzky B. Advanced characterization of immobilized enzymes as heterogeneous biocatalysts. Catal Today. Forthcoming. doi: 10.1016/j.cattod.2015.05.004.
Fernández-Lorente G, Lopez-Gallego F, Bolivar JM, Rocha-Martin J, MorenoPerez S, Guisán JM. Immobilization of proteins on glyoxyl activated supports: dramatic stabilization of enzymes by multipoint covalent attachment on pre-existing supports. Curr Org Chem 2015;19:1-13.
Mateo C, Palomo JM, FernandezLorente G, Guisan JM, Fernandez-Lafuente R. Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme Microb Technol 2007;40(6):1451-63.
Aissaoui N, Landoulsi J, Bergaoui L, Boujday S, Lambert JF. Catalytic activity and thermostability of enzymes immobilized on silanized surface: influence of the crosslinking agent. Enzyme Microb Technol. 2013;52(6-7):336-43.
Singh P, Gupta P, Singh R, Sharma R. Activity and stability of immobilized alpha-amylase produced by Bacillus acidocaldarius. Int J Pharm Life Sci. 2012;3(12) :2247-53.
Benavente R, Pessela BC, Curiel JA, de las Rivas B, Munoz R, Guisan JM, et al. Improving properties of a novel beta-galactosidase from Lactobacillus plantarum by covalent immobilization. Molecules. 2015; 20(5):7874-89.
EL-Tanash AB, Sherief AA, Nour A. Catalytic properties of immobilized tannase produced from Aspergillus aculeatus compared with the free enzyme. Braz J Chem Eng. 2011;28(3):381-91.
Hanušová K, Vápenka L, Dobiáš J, Mišková L. Development of antimicrobial packaging materials with immobilized glucose oxidase and lysozyme. Cent Eur J Chem. 2013;11(7):1066-78.
Aissaoui N, Bergaoui L, Boujday S, Lambert J-F, Méthivier C, Landoulsi J. Enzyme immobilization on silane-modified surface through short linkers: fate of interfacial phases and impact on catalytic activity. Langmuir. 2014;30(14):4066-77.
Gao Y, Truong YB, Cacioli P, Butler P, Kyratzis IL. Bioremediation of pesticide contaminated water using an organophosphate degrading enzyme immobilized on nonwoven polyester textiles. Enzyme Microb Technol. 2014;54:38-44.
Palomo JM, Segura RL, FernandezLorente G, Pernas M, Rua ML, Guisan JM, et al. Purification, immobilization, and stabilization of a lipase from Bacillus thermocatenulatus by interfacial adsorption on hydrophobic supports. Biotechnol Prog. 2004;20(2):630-5.
Wang B, Tang X, Liu J, Yu H. Escherichia coli BioH: a highly enantioselective and organic solvent tolerant esterase for kinetic resolution of sec-alcohols. Tetrahedron Lett. 2010;51(48):6360-4.
Lo YS, Ibrahim CO. Some characteristics of amberlite XAD-7-adsorbed lipase from Pseudomonas sp. AK. Malays J Microbiol. 2005;1:53-6.
Ye P, Xu ZK, Wang ZG, Wu J, Deng HT, Seta P. Comparison of hydrolytic activities in aqueous and organic media for lipases immobilized on poly(acrylonitrileco-maleic acid) ultrafiltration hollow fiber membrane. J Mol Catal B: Enzym. 2005;32(4):115-21.
Fernandez-Lorente G, Terreni M, Mateo C, Bastida A, Fernandez-Lafuente R, Dalmases P, et al. Modulation of lipase properties in macro-aqueous systems by controlled enzyme immobilization: enantioselective hydrolysis of a chiral ester by immobilized Pseudomonas lipase. Enzyme Microb Technol. 2001;28(4-5):389-96.
Lozano P, De Diego T, Carrié D, Vaultier M, Iborra JL. Synthesis of glycidyl esters catalyzed by lipases in ionic liquids and supercritical carbon dioxide. J Mol Catal A 2004;214(1):113-9.
Sahin O, Erdemir S, Uyanik A, Yilmaz M. Enantioselective hydrolysis of (R/S)-Naproxen methyl ester with solgel encapsulated lipase in presence of calix[n]arene derivatives. Appl Catal A. 2009;369(1-2):36-41.
Gupta A, Khare SK. Enzymes from solvent-tolerant microbes: useful biocatalysts for non-aqueous enzymology. Crit Rev Biotechnol. 2009;29(1):44-54.
Andrade LH, Barcellos T. Lipasecatalyzed highly enantioselective kinetic resolution of boron-containing chiral alcohols. Org Lett. 2009;11(14):3052-5.
Jústiz OH, Fernández-Lafuente R, Guisán JM, Negri P, Pagani G, Pregnolato M, et al. Onepot chemoenzymatic synthesis of 3’-functionalized cephalosporines (cefazolin) by three consecutive biotransformations in fully aqueous medium. J Org Chem. 1997;62(26):9099-106.
Tan T, Chen B, Ye H. Enzymatic synthesis of 2-ethylhexyl palmitate by lipase immobilized on fabric membranes in the batch reactor. Biochem Eng J 2006;29(1-2):41-5.
Nawani N, Singh R, Kaur J. Immobilization and stability studies of a lipase from thermophilic Bacillus sp: The effect of process parameters on immobilization of enzyme. Electron J Biotechnol 2006;9(5):559-65.
Cabrera Z, Fernandez-Lorente G, Fernandez-Lafuente R, Palomo JM, Guisan JM. Novozym 435 displays very different selectivity compared to lipase from Candida antarctica B adsorbed on other hydrophobic supports. J Mol Catal B Enzym. 2009;57(1-4):171-6.
Yilmaz E, Can K, Sezgin M, Yilmaz M. Immobilization of Candida rugosa lipase on glass beads for enantioselective hydrolysis of racemic naproxen methyl ester. Bioresour Technol. 2011;102(2):499-506.
Yilmaz E, Sezgin M, Yilmaz M. Enantioselective hydrolysis of racemic naproxen methyl ester with sol-gel encapsulated lipase in the presence of sporopollenin. J Mol Catal B Enzym. 2010;62(2):162-8.
Wang B, Jiang L, Wang J, Ma J, Liu M, Yu H. A tandem and fully enzymatic procedure for the green resolution of chiral alcohols: acylation and deacylation in non-aqueous media. Tetrahedron. 2011;22(9):980-5.
Bornscheuer UT. Methods to increase enantioselectivity of lipases and esterases. Curr Opin Biotechnol. 2002;13(6):543-7.
Segura RL, Palomo JM, Mateo C, Cortes A, Terreni M, Fernandez-Lafuente R, et al. Different properties of the lipases contained in porcine pancreatic lipase extracts as enantioselective biocatalysts. Biotechnol Prog. 2004;20(3):825-9.
Yu HW, Chen H, Yang YY, Ching CB. Effect of salts on activity, stability and enantioselectivity of Candida rugosa lipase in isooctane. J Mol Catal B Enzym. 2005;35(1-3):28-32.
Palomo JM, Segura RL, Fernández-Lorente G, Guisán JM, Fernández-Lafuente R. Enzymatic resolution of (±)-glycidyl butyrate in aqueous media. Strong modulation of the properties of the lipase from Rhizopus oryzae via immobilization techniques. Tetrahedron: Asymmetry 2004;15(7):1157-61.
Palomo JM, Fernández-Lorente G, Mateo C, Ortiz C, Fernández-Lafuente R, Guisán JM. Modulation of the enantioselectivity of lipases via controlled immobilization and medium engineering: hydrolytic resolution of Mandelic acid esters. Enzyme Microb Technol 2002;31(6):775-83.
Ong AL, Kamaruddin AH, Bhatia S, AboulEnein HY. Enantioseparation of (R,S)-ketoprofen using Candida antarctica lipase B in an enzymatic membrane reactor. J Sep Sci. 2008;31(13):2476-85.
Wang PY, Tsai SW, Chen TL. Improvements of enzyme activity and enantioselectivity via combined substrate engineering and covalent immobilization. Biotechnol Bioeng. 2008;101(3):460-9.
Kasche V, Haufler U, Riechmann L. Equilibrium and kinetically controlled synthesis with enzymes: semisynthesis of penicillins and peptides. Methods Enzymol. 1987;136: 280-92.