2015, Número 3
<< Anterior Siguiente >>
Rev Cubana Invest Bioméd 2015; 34 (3)
Canales iónicos Receptores de Potencial Transitorio y su papel protagónico en la terapia analgésica
Galán ML, Souto CRD, Valdés GS, Minaberriet CE
Idioma: Español
Referencias bibliográficas: 38
Paginas: 278-288
Archivo PDF: 143.25 Kb.
RESUMEN
En la búsqueda de nuevas opciones terapéuticas para el tratamiento del dolor, se ha
llegado al descubrimiento de canales iónicos que actúan como receptores y están
presentes en neuronas nociceptoras aferentes primarias. Entre estos receptores, se
encuentran los canales iónicos receptores de potencial transitorio que regulan las vías
involucradas en el dolor y la nocicepción. Se realizó una revisión actualizada de los
principales canales iónicos receptores de potencial transitorio implicados en la
fisiopatología del dolor. Se hace una reseña histórica del descubrimiento de estas
moléculas y sus estudios avanzados. A continuación se revisan las diferentes familias
de estos canales con su clasificación, nomenclatura, estructura y funciones celulares.
También se hace un recuento de la relación de estos canales con la analgesia, así
como el mecanismo de acción de algunos analgésicos que actúan sobre ellos.
Finalmente, se detallan importantes consideraciones a tomar en cuenta, que pudieran
influir sobre la utilización de estos medicamentos en la clínica. Por tal motivo, el
trabajo procura ser una revisión que abarque el rol de los canales TRP como nuevas
dianas farmacológicas en el tratamiento del dolor.
REFERENCIAS (EN ESTE ARTÍCULO)
Blanco E, Espinosa JM, Marcos H, Rodriguez MJ. Guía de Buena Práctica Clínica en Dolor y su Tratamiento. Ed: International Marketing & Communications, S.A. Madrid. 2004:9-17.
Dray A. Nuevas perspectivas en el tratamiento farmacológico del dolor de la enfermedad reumática. Rheum Dis Clin N Am. 2008;34:481–505.
Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D, et all. The capsaicin receptor: a heat-activated ion channel in the pain pathway . Nature. 1997;389:816–824.
Nilius B, Owsianik G. The transient receptor potential family of ion channels. Genome Biol. 2011;12(3):218.
Vassort G, Fauconnier J. Les canaux TRP (transient receptor potential) Une nouvelle famille de canaux à expression varié. MEDECINE/SCIENCES. 2008;24:163-8.
Zheng J. Molecular mechanism of TRP channels. Compr Physiol. 2013 Jan;3(1):221-42.
Talavera K, Nilius B, Voets T. Neuronal TRP channels: thermometers, pathfinders and life-savers. Trends in Neurosciences. 2008;31(6):287-95.
Holzer P, Izzo AA. The pharmacology of TRP channels. Br J Pharmacol. 2014 May;171(10):2469-73.
Bourinet E, Altier C, Hildebrand ME, Trang T, Salter MW, Zamponi GW, et all. Calcium-permeable ion channels in pain signaling. Physiol Rev. 2014 Jan;94(1):81- 140.
Julius D. TRP channels and pain. Annu Rev Cell Dev Biol. 2013;29:355-84.
Steinberg X, Lespay-Rebolledo C, Brauchi S. A structural view of ligand-dependent activation in thermo TRP channels. Frontiers in Physiology/Membrane Physiology and Membrane Biophysics. 2014;5(171):1-14.
Mickle AD, Shepherd AJ, Mohapatra DP. Sensory TRP Channels: The Key Transducers of Nociception and Pain. Prog Mol Biol Transl Sci. 2015;131:73-118.
Stuckya CL, Dubinb AE, Jeskec NA, Malind SA, McKemye D, Story GM. Roles of transient receptor potential channels in pain. Brain Res Rev. 2009 April;60(1):2–23.
Minke B. The history of the Drosophila TRP channel: The birth of a new channel superfamily. J Neurogenet. 2010 December;24(4):216–33.
Cosens DJ, Manning A. Abnormal electroretinogram from a Drosophila mutant. Nature. 1969;224:285–7.
Minke B, Wu C, Pak WL. Induction of photoreceptor voltage noise in the dark in Drosophila mutant. Nature. 1975;258:84–7.
Montell C, Rubin GM. Molecular characterization of the Drosophila trp locus: a putative integral membrane protein required for phototransduction. Neuron. 1989;2:1313–23.
Zhu X, Chu PB, Peyton M, Birnbaumer L. Molecular cloning of a widely expressed human homologue for the Drosophila trp gene. FEBS Lett. 1995;373:193–8.
Montell C, Birnbaumer L, Flockerzi V, Bindels RJ, Bruford EA, Caterina MJ, et al. A unified nomenclature for the superfamily of TRP cation channels. Mol Cell. 2002;9(2):229–31.
Wu LJ, Sweet TB, Clapham DE. International Union of Basic and Clinical Pharmacology. LXXVI. Current Progress in the Mammalian TRP Ion Channel Family. Pharmacol Rev. 2010 September;62(3):381–404.
Carvacho I, Chaudhuri D, Clapham DE, Doerner JF, Julius D, Kahle T, et al. Transient Receptor Potential channels. IUPHAR/BPS Guide to PHARMACOLOGY. 2015 [citado 20 mar 2015]. Disponible en: http://www.guidetopharmacology.org/GRAC/FamilyDisplayForward?familyId=78 .
Morales-Lázaro S, Simon SA, Rosenbaum T. The role of endogenous molecules in modulating pain through transient receptor potential vanilloid 1 (TRPV1). J Physiol. 2013;591(13): 3109–21.
Caterina MJ, Leffler A, Malmberg AB, Martin WJ, Trafton J, Petersen-Zeitz KR, et al. Impaired nociception and pain sensation in mice lacking the capsaicin receptor. Science. 2000;288(5464):306-13.
Spicarova V, Nerandzic V, Palecek J. Update on the Role of Spinal Cord TRPV1 Receptors in Pain Modulation. Physiol. Res. 2014;63(Suppl. 1): S225-S36.
Stanos S. Topical agents for the management of musculoskeletal pain. Journal of pain and symptom management. 2007;33(3):342-55.
European Medicines Agency (EMA). Qutenza capsaicin European Public Assessment Report (EPA). 2009 [citado 21 mar 2015]. Disponible en: http://www.ema.europa.eu/docs/en_GB/document_library/EPAR_- Summary_for_the_public/human/000909/WC500040448.pdf .
Fuentes NO. Analgésicos coadyuvantes para el tratamiento del dolor crónico. Revista Colombiana de Medicina Física y Rehabilitación. 2010;20(1):33–44.
Gallagher R. Management of Neuropathic Pain Translating Mechanistic Advances and Evidence-based Research into Clinical Practice. Clin J Pain. 2006;22:S2-S8.
Gallardo J. El dolor postoperatorio: pasado, presente y futuro. Rev Chil Anest. 2010;39:69-75.
Leffler A, Fischer MJ, Rehner D, Kienel S, Kistner K, Sauer SK, et al. The vanilloid receptor TRPV1 is activated and sensitized by local anesthetics in rodent sensory neurons. J Clin Invest. 2008;118:763-76.
Andersson DA, Gentry C, Alenmyr L, Killander D, Lewis SE, Andersson A, et al. TRPA1 mediates spinal antinociception induced by acetaminophen and the cannabinoid Δ(9)-tetrahydrocannabiorcol. Nat Commun. 2011 Nov 22;2:551.
Hu H, Tian J, Zhu Y, Wang Ch, Xiao R, Herz JM, et al. Activation of TRPA1 Channels by Fenamate Non-steroidal Anti-inflammatory Drugs. Pflugers Arch - Eur J Physiol. 2010 March;459(4):579–92.
Forster AB, Reeh PW, Messlinger K, Fischer M. High concentrations of morphine sensitize and activate mouse dorsal root ganglia via TRPV1 and TRPA1 receptors. Molecular Pain. 2009;5:17.
Nassini R, Fusi C, Materazzi S, Coppi E, Tuccinardi T, Marone IM, et al. The TRPA1 channel mediates the analgesic action of dipyrone and pyrazolone derivatives. Br J Pharmacol. 2015;Mar 13.
Nassini R, Materazzi S, Benemei S, Geppetti P. The TRPA1 Channel in Inflammatory and Neuropathic Pain and Migraine. Rev Physiol Biochem Pharmacol. 2014;167:1-43.
Benemei S, Fusi C, Trevisan G, Geppetti P. The TRPA1 channel in migraine mechanism and treatment. British Journal of Pharmacology. 2014;171(10):2552–67.
Winchester WJ, Gore K, Glatt S, Petit W, Gardiner JC, Conlon K, et al. Inhibition of TRPM8 Channels Reduces Pain in the Cold Pressor Test in Humans. J Pharmacol Exp Ther. 2014 Nov;351(2):259-69.
Salat K, Filipek B. Antinociceptive activity of transient receptor potential channel TRPV1, TRPA1, and TRPM8 antagonists in neurogenic and neuropathic pain models in mice. J Zhejiang Univ-Sci B (Biomed & Biotechnol). 2015;16(3):167-8.