2015, Número 4
<< Anterior Siguiente >>
Evid Med Invest Salud 2015; 8 (4)
Los microRNA: nuevos actores en la obesidad
Heredia-Melo L, Castañón-Sánchez CA, Marchat LA
Idioma: Español
Referencias bibliográficas: 38
Paginas: 172-179
Archivo PDF: 349.84 Kb.
RESUMEN
La obesidad y las enfermedades asociadas a ella representan un grave problema de salud a nivel mundial. Además de las dietas restringidas en calorías, los cambios en el estilo de vida y las terapias médicas, la cirugía bariátrica es el tratamiento recomendado para las personas con obesidad mórbida. La identificación de los mecanismos moleculares subyacentes a este desorden metabólico mostró la importancia de la regulación epigenética. En particular, los microRNA son pequeñas moléculas de RNA no codificantes que regulan la expresión génica a través de la inhibición de RNA mensajeros específicos mediante degradación o represión traduccional. Se ha demostrado que los microRNA desempeñan un papel regulador importante en una variedad de procesos biológicos relacionados con la obesidad, como la diferenciación del adipocito, integración metabólica o resistencia a la insulina, entre otros. En esta revisión describimos la identificación y el papel de algunos microRNA en la obesidad y las enfermedades metabólicas relacionadas. También presentamos datos sobre el efecto regulador de la cirugía bariátrica en estas moléculas, lo que puede explicar los cambios físicos y bioquímicos observados en el paciente. Este conocimiento pone de relieve el potencial de los microRNA como biomarcadores de la obesidad.
REFERENCIAS (EN ESTE ARTÍCULO)
Yang W, Kelly T, He J. Genetic epidemiology of obesity. Epidemiol Rev. 2007; 29: 49-61.
World Health Organization. Obesity and overweight. Fact sheet N° 311. Available in: http://www.who.int/mediacentre/factsheets/fs311/en/
Instituto Nacional de Salud Pública. Encuesta nacional de salud y nutrición 2012. Disponible en: http://ensanut.insp.mx
Buchwald H, Avidor Y, Braunwald E, Jensen MD, Pories W, Fahrbach K et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004; 292: 1724-1737.
Stylopoulos N, Hoppin AG, Kaplan LM. Roux‐en‐Y gastric bypass enhances energy expenditure and extends lifespan in diet‐induced obese rats. Obesity. 2009; 17: 1839-1847.
Ashrafian H, Bueter M, Ahmed K, Suliman A, Bloom SR, Darzi A et al. Metabolic surgery: an evolution through bariatric animal models. Obes Rev. 2010; 11: 907-920.
Zhang H, DiBaise JK, Zuccolo A, Kudrna D, Braidotti M, Yu Y et al. Human gut microbiota in obesity and after gastric bypass. PNAS. 2009; 106: 2365-2370.
Li JV, Ashrafian H, Bueter M, Kinross J, Sands C, le Roux CW et al. Metabolic surgery profoundly influences gut microbial-host metabolic cross-talk. Gut. 2011; 60: 1214-1223.
Guijarro A, Osei-Hyiaman D, Harvey-White J, Kunos G, Suzuki S, Nadtochiy S et al. Sustained weight loss after roux-en-y gastric bypass is characterized by down regulation of endocannabinoids and mitochondrial function. Ann Surg. 2008; 247: 779-790.
Holliday R. Epigenetics: a historical overview. Epigenetics. 2006; 1 (2): 76-80.
Dolinoy D, Jirtle R. Environmental epigenomics in human health and disease. Environ Mol Mutagen. 2008; 49: 4-8.
Saini H, Griffiths-Jones S, Enright A. Genomics analysis of human microRNA transcripts. Proc Natl Acad Sci USA. 2007; 45: 17719-1724.
Kim Y, Kim V. Processing of intronic microRNAs. EMBO. 2007; 3: 775-783.
Schwarz D, Hutvágner G, Du T, Xu Z, Aronin N, Zamore P. Asymmetry in the assembly of the RNAi enzyme complex. Cell. 2012; 2: 199-208.
Ha M, Kim VN. Regulation of microRNA biogenesis. Nat Rev Mol Cell Biol. 2014; 15: 509-524.
Bartel DP. MicroRNAs: genomics, biogenesis, mechanism and function. Cell. 2004; 116: 281-297.
Krek A, Grün D, Poy MN, Wolf R, Rosenberg L, Epstein EJ et al. Combinatorial microRNA target predictions. Nat Genet. 2005; 37: 495-500.
Cai Y, Yu X, Hu S, Yu J. A brief review on the mechanisms of miRNA regulation. Genomics Proteomics Bioinformatics. 2009; 7: 147-154.
Rajewsky N. microRNA target predictions in animals. Nat Genet. 2006; 38 Suppl: S8-13.
Kosaka N, Iguchi H, Ochiya T. Circulating microRNA in body fluid: a new potential biomarker for cancer diagnosis and prognosis. Cancer Sci. 2010; 101: 2087-2092.
Zampetaki A, Willeit P, Drozdov I, Kiechl S, Mayr M. Profiling of circulating microRNAs: from single biomarkers to re-wired networks. Cardiovasc Res. 2012; 93: 555-562.
Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat Cell Biol. 2011; 13: 423-433.
Turchinovich A, Weiz L, Langheinz A, Burwinkel B. Characterization of extracellular circulating microRNA. Nucleic Acids Res. 2011; 39: 7223-7233.
Zhu H, Fan GC. Extracellular/circulating microRNAs and their potential role in cardiovascular disease. Am J Cardiovasc Dis. 2011; 1: 138-149.
Krützfeldt J, Stoffel M. MicroRNAs: a new class of regulatory genes affecting metabolism. Cell Metab. 2006; 4: 9-12.
Jackson RJ, Standart N. How do microRNA’s regulate gene expression? Sci STKE. 2007; 367: 1-14.
Rome S. Are extracellular microRNAs involved in type 2 diabetes and related pathologies? Clin Biochem. 2013; 46: 937-945.
Kloting N, Berthold S, Kovacs P, Schon MR, Fasshauer M, Ruschke K et al. MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS ONE. 2009; 4: e4699.
Ortega FJ, Moreno-Navarrete JM, Pardo G, Sabater M, Hummel M, Ferrer A et al. MiRNA expression profile of human subcutaneous adipose and during adipocyte differentiation. PLoS ONE. 2010; 5: e9022.
Meerson A, Traurig M, Ossowski V, Fleming JM, Mullins M, Baier LJ. Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α. Diabetologia. 2013; 56: 1971-1979.
Chen X, Ba Y, Ma L, Cia X, Yuan Y, Wang K et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008; 18: 997-1006.
Karolina DS, Tavintharan S, Armugam A, Sepramaniam S, Pek SL, Wong MT et al. Circulating miRNA profiles in patients with metabolic syndrome. J Clin Endocrinol Metab. 2012; 97: E2271-2276.
Wang YT, Tsai PC, Liao YC, Hsu CY, Juo SH. Circulating microRNAs have a sex-specific association with metabolic syndrome. J Biomed Sci. 2013; 20: 72.
Ortega FJ, Mercader JM, Catalán V, Moreno-Navarrete JM, Pueyo N, Sabater M et al. Targeting the circulating microRNA signature of obesity. Clin Chem. 2013; 59: 781-792.
Pescador N, Pérez-Barba M, Ibarra JM, Corbatón A, Martínez-Larrad MT, Serrano-Ríos M. Serum circulating microRNA profiling for identification of potential type 2 diabetes and obesity biomarkers. PLoS One. 2013; 8: e77251.
Ortega FJ, Mercader JM, Moreno-Navarrete JM, Nonell L, Puigdecanet E, Rodriguez-Hermosa JI et al. Surgery-induced weight loss is associated with the downregulation of genes targeted by microRNAs in adipose tissue. J Clin Endocrinol Metab. 2015: 100 (11): E1467-1476.
Ortega FJ, Moreno M, Mercader JM, Moreno-Navarrete JM, Fuentes-Batllevell N, Sabater M et al. Inflammation triggers specific microRNA profiles in human adipocytes and macrophages and in their supernatants. Clin Epigenetics. 2015; 7: 49.
Lirun K, Sewe M, Yong W. A pilot study: the effect of roux-en-Y gastric bypass on the serum MicroRNAs of the type 2 diabetes patient. Obes Surg. 2015; 25 (12): 2386-2392.