2015, Número 6
<< Anterior Siguiente >>
Gac Med Mex 2015; 151 (6)
Densidad mineral ósea y su asociación con la composición corporal y biomarcadores metabólicos del eje insulino-glucosa, hueso y tejido adiposo en mujeres
Nava-González EJ, Cerda-Flores RM, García-Hernández PA, Jasso-de la Peña GA, Bastarrachea RA, Gallegos-Cabriales EC
Idioma: Español
Referencias bibliográficas: 38
Paginas: 731-740
Archivo PDF: 109.19 Kb.
RESUMEN
Introducción: Existen pocas investigaciones que integren las causas comunes de la osteoporosis y la obesidad (desórdenes
de la composición corporal). Un primer paso es investigar correlaciones entre sus fenotipos biológicos para determinar su
fisiología común integrativa.
Objetivo: Correlacionar la variabilidad normal de la densidad mineral ósea (DMO) con fenotipos
de composición corporal y biomarcadores metabólicos de fisiología ósea, eje insulino-glucosa y tejido adiposo.
Metodología:
Estudio transversal. n = 75 mujeres (18-45 años).
Mediciones: índice de masa corporal (IMC), cintura, masa grasa, masa
magra por absorciometría dual de rayos X (DXA) , glucosa, insulina, osteocalcina, leptina, TNF-α. Análisis estadísticos: modelo
lineal general multivariado (MLGM), SPSS V.22, p ‹ 0.05.
Resultados: Edad: 32.08 ± 7.33. MLGM1 de contenido mineral
óseo (CMO) con 2 fenotipos excluidos (glucosa, insulina) coeficiente de β estandarizada: osteocalcina (β = -.228, p = .011),
leptina (β = -.238, p = .023), masa magra (β = .606, p = .001) y masa grasa (β = 1.237, p = .001) en 62.0%. El MLGM2 DMO
total con 3 fenotipos excluidos (IMC, glucosa, TNF-α): insulina (β = .250, p = .024), osteocalcina (β = -.362, p = .001), leptina
(β = -.313, p = .025), masa magra (β = .512, p = .001) y masa grasa (β = .701, p = .001) en 46.3%.
Conclusiones: Los
resultados muestran que una composición corporal con una mayor cantidad masa magra es benéfica para el hueso. Este
estudio reafirma la importancia de la recomendación de efectuar ejercicio físico regular, para prevenir la pérdida de masa
muscular.
REFERENCIAS (EN ESTE ARTÍCULO)
Rivera JA, Barquera S, Campirano F, et al. Epidemiological and nutritional transition in Mexico: rapid increase of non-communicable chronic diseases and obesity. Public Health Nutr. 2002;5:113-22.
Rosen CJ, Klibanski A. Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am J Med. 2009;122(5):409-14.
Bastarrachea R, Fuenmayor R, Brajkovich I, et al. Entendiendo las causas de la obesidad a través de la biología celular del adipocito. Revista Venezolana de Endocrinología Metabólica. 2005;3(3):20-9.
Zipori D. The stem state: mesenchymal plasticity as a paradigm. Curr Stem Cell Res Ther. 2006;1:95-102.
DeFronzo RA. Insulin resistance, lipotoxicity, type 2 diabetes and atherosclerosis: the missing links. The Claude Bernard Lecture 2009. Diabetologia. 2010;53(7):1270-87.
Aguilar-Salinas CA, Rojas R, Gomez-Perez FJ, et al. The metabolic syndrome: a concept hard to define. Arch Med Res. 2005;36(3):223-31.
Clark P, Lavielle P, Franco-Marina F, et al. Incidence rates and life-time risk of hip fractures in Mexicans over 50 years of age: a population- based study. Osteoporos Int. 2005;16(12):2025-30.
Clark P, Carlos F, Barrera C, et al. Direct costs of osteoporosis and hip fracture: an analysis for the Mexican healthcare system. Osteoporos Int. 2008;19(3):269-76.
Lazcano-Ponce E, Tamayo J, Díaz R, et al. Tendencias de correlación para la densidad mineral ósea en mujeres mexicanas: pruebas de predisposición familiar. Salud Pública Mex. 2009;51 Supl 1:S93-9.
Rosen CJ. Bone remodeling, energy metabolism, and the molecular clock. Cell Metab. 2008;7:7-10.
Rosen CJ, Klibanski A. Bone, fat, and body composition: evolving concepts in the pathogenesis of osteoporosis. Am J Med. 2009;122(5): 409-14.
Zillikens MC, Uitterlinden AG, van Leeuwen JP, et al. The role of body mass index, insulin, and adiponectin in the relation between fat distribution and bone mineral density. Calcif Tissue Int. 2010;86(2):116-25.
Boyanov M, Bakalov D, Boneva Z. Bone mineral density in men with and without the metabolic syndrome. Aging Male. 2009;12(2-3):62-5.
Schwartz AV, Sellmeyer DE, Ensrud KE, et al. Older women with diabetes have an increased risk of fractures: a prospective study. J Clin Endocrinol Metab. 1997;86:32-8.
Ma L, Oei L, Jiang L, et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol. 2012;27(5):319-32.
Rosen CJ, Bouxsein ML. Mechanisms of disease: is osteoporosis the obesity of bone? Nat Clin Pract Rheumatol. 2006;2(1):35-43.
Nava-González EJ, de la Garza-Casas YE, Salazar-Montalvo RG, et al. Relationship among anthropometric and gluco-metabolic parameters, bone mineral density and endometriosis. Rev Med Inst Mex Seguro Soc. 2013;51(5):522-31.
Rebbeck TR. The contribution of inherited genotype to breast cancer. Breast Cancer Res. 2002;4(3):85-9.
Kolassa JE. A Comparison of Size and Power Calculations for the Wilcoxon Statistic for Ordered Categorical Data. Stat Med. 1995;14:1577-81.
Ralston SH. Genetic control of susceptibility to osteoporosis. J Clin Endocrinol Metab.
Gregory RS, Handelsman Y, Pezalla EJ, et al. Practical perspectives on the management of overweight and obesity. Am J Manag Care. 2014;20(3 Suppl):S64-75.
Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guidelines. Arch Intern Med. 2002;162(18):2074-9.
Kanis JA, Melton LJ III, Christiansen C, et al. The diagnosis of osteoporosis. J Bone Miner Res. 1994;9:1137-41.
American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care. 2010;33:S62-9.
Lee JM, Okumura MJ, Davis MM, et al. Prevalence and determinants of insulin resistance among U.S. adolescents. Diabetes Care. 2006;29(11):2427-32.
Corica F, Allegra A, CorsonelloA, et al. Relationship between plasma leptin levels and the tumor necrosis factor-alpha system in obese subjects. Int J Obes. 1999;23:355-60.
Delmas PD, Eastell R, Garnero P, et al. The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int. 2000;11 (Suppl 6):S2-17.
Warming L, Hassager C, Christiansen C. Changes in bone mineral density with age in men and women: a longitudinal study. Osteoporos Int. 2002;13(2):105-12.
Seidell JC, Flegal KM. Assessing obesity: classification and epidemiology. Br Med Bull. 1997;53(2):238-52.
Okorodudu DO, Jumean MF, Montori VM, et al. Diagnostic performance of body mass index to identify obesity as defined by body adiposity: a systematic review and meta- analysis. Int J Obes (Lond). 2010;34(5):791-9.
Hsu YH, Venners SA, Terwedow HA, et al. Relation of body composition, fat mass, and serum lipids to osteoporotic fractures and bone mineral density in Chinese men and women. Am J Clin Nutr. 2006;83:146-54.
Bhupathiraju SN, Dawson-Hughes B, Hannan MT, et al. Centrally located body fat is associated with lower bone mineral density in older Puerto Rican adults. Am J Clin Nutr. 2011;94:1063-70.
Salvador Figueras M, Gargallo P. Análisis Exploratorio de Datos. Disponible en: 5campus.com, Estadística
Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Clin Pharmacol Ther. 2001;69:89-95.
Tunenari T, Tsutsumi M, Ohno K, et al. Age- and gender-related changes in body composition in Japanese subjects. J Bone Miner Res. 1993;8(4):397-402.
Ohmura A, Kushida K, Yamazaki K, et al. Bone density and body composition in Japanese women. Calcif Tissue Int. 1997;61:117-22.
Takada H, Washino K, Iwata H. Risk factor for low bone mineral density among females: the effect of lean body mass. Prev Med. 1997;26:633-8.
Kim H, Tanaka K, Amagai H, et al. Age-related changes of body composition by dual- energy X-ray absorptiometry in Japanese men and women (in Japanese). Environ Health Prev Med. 2009;14:46-51.