2015, Número 2
Consideraciones en la definición del modelo específico al paciente de la tibia
Idioma: Español
Referencias bibliográficas: 20
Paginas: 157-167
Archivo PDF: 297.69 Kb.
RESUMEN
Introducción: los análisis por elementos finitos se usan para entender y predecir los procesos biológicos. En la biomecánica ortopédica, los modelos específicos al paciente se generan a partir de Tomografía Computarizada y empleados en la toma de decisiones médicas. Algunos procesos correctivos ortopédicos pueden simularse a través, de los análisis por elementos finitos. Para obtener modelos biomecánicos confiables, es muy recomendable reducir los errores en la definición del modelo en la etapa de pre-procesamiento del análisis por elementos finitos.Objetivo: analizar la influencia de la densidad del mallado y las propiedades mecánicas durante la definición del modelo específico al paciente en los resultados del análisis por elementos finitos.
Métodos: se empleó el Método de Elementos Finitos en la simulación de la tibia a compresión. La geometría de la tibia del paciente se generó a partir de Tomografía Computarizada. Se emplearon mallas con tamaño de elementos no uniforme y uniforme. Al modelo se le aplicaron propiedades mecánicas homogéneas y no homogéneas.
Resultados: los elementos de bajo orden convergen a la solución, las tensiones para las mallas con estos elementos son inferiores a las correspondientes las mallas con elementos de tamaño uniforme y de alto orden. Por otra parte, las propiedades mecánicas no homogéneas reducen la diferencia en el cálculo de las tensiones.
Conclusiones: para obtener modelos específicos al paciente confiables se recomienda, generar la geometría del hueso con superficies suavisadas, controlar la calidad de la malla superficial, usar propiedades mecánicas no homogéneas, y utilizar la malla generada directo en Abaqus con elementos de bajo orden y tamaño no uniforme.
REFERENCIAS (EN ESTE ARTÍCULO)
González Carbonell RA, Álvarez García E, Moya Rodríguez J. Tacón de Torque para uso Ortopédico: Propuesta de un Nuevo Diseño. En: Folgueras Méndez J, Aznielle Rodríguez TY, Calderón Marín CF, Llanusa Ruiz SB, Castro Medina J, Vega Vázquez H, et al., editores. V Latin American Congress on Biomedical Engineering CLAIB 2011. IFMBE Proceedings. Berlín: Springer; 2013. p. 912-5.
González Carbonell RA, Ortiz Prado A, Cisneros Hidalgo YA, Alpízar Aguirre A. Bone remodeling simulation of subject-specific model of tibia under torque. En: Braidot A, Hadad A, editores. VI Latin American Congress on Biomedical Engineering CLAIB 2014. IFMBE Proceedings. Berlín: Springer; 2015. p. 446-9.
Cisneros Hidalgo YA, González Carbonell RA, Ortiz Prado A, Jacobo Almendáriz VH, Puente Álvarez A. Modelo mecanobiológico de una tibia humana para determinar su respuesta ante estímulos mecánicos externos. Rev Cubana Invest Bioméd [revista en la Internet]. 2015 Mar [citado 7 Feb 2015];34(1):54-63. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864- 03002015000100006&lng=es .
Cisneros Hidalgo YA, González Carbonell RA, Puente Alvarez A, Camue Corona E, Oropesa Rodríguez Y. Generación de imágenes tridimensionales: integración de tomografía computarizada y método de los elementos finitos. Rev Cubana Invest Bioméd [revista en la Internet]. 2014 Sep [citado 7 Feb 2015];33(3):313-21. Disponible en: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0864- 03002014000300007&lng=es .
Soler Gracia C, Pastor JP, Jorge RL, Luna PV, Lacuesta JMS, Fuentes JVH, et al. Biomecánica de la marcha humana normal y patológica.[Internet]. Valencia: IBV. 2006 [citado 3 Feb 2015]. Disponible en: https://books.google.es/books/about/Biomec%C3%A1nica_de_la_marcha_humana_n ormal.html?hl=es&id=wkAcOwAACAAJ